Artículo

Villalobos-Vega, R.; Salazar, A.; Miralles-Wilhelm, F.; Haridasan, M.; Franco, A.C.; Goldstein, G. "Do groundwater dynamics drive spatial patterns of tree density and diversity in Neotropical savannas?" (2014) Journal of Vegetation Science. 25(6):1465-1473
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Questions: What are the temporal and spatial variations of groundwater depth along topographic gradients in Neotropical savannas? Are patterns of tree density and species diversity along topographic gradients in Neotropical savannas controlled by water table depth? Do soil and groundwater nutrient concentrations differ along topographic gradients in Neotropical savannas? Location: Fire-protected savannas of central Brazil. Methods: Over 16 mo, we monitored temporal and spatial variations in groundwater levels using automated submersible pressure transducers installed in ten wells located along two topographic gradients (five wells per gradient) of 950 m and 1703 m in length, representing elevations of 47 and 37 m a.s.l., respectively. We located the wells according to changes in vegetation physiognomies from woody savannas at high elevations, to open shrubby grasslands at low elevations. Along each topographic gradient we determined soil and groundwater nutrient concentrations as well as richness, density, basal diameter and height of trees within two plots of 14 × 14 m (392 m2) adjacent to each well. Results: Along the two gradients, groundwater levels exhibited larger fluctuations at lower than at higher elevations where the water table was deeper. Richness, density and diversity of trees decreased significantly at lower elevations where soils were waterlogged during the wet season. Soil pH and soil concentrations of carbon, nitrogen and manganese decreased significantly as elevation increased along the topographic gradients, but soil nutrient concentrations of phosphorus, aluminium and iron did not change with elevation. Groundwater samples contained only trace amounts of nutrients and were poorly correlated with elevation along the topographic gradients. Conclusions: In Neotropical savannas, the minimum distance between the soil surface and water table depth (reached during the wet season) and the relatively large fluctuations in groundwater limit tree density and diversity at low elevations as savanna trees cannot cope with extended waterlogging during the wet season and with low soil water availability during the dry season. Thus, variations of tree density and diversity along topographic gradients are more related to spatial and temporal variations in water table depth than to soil and groundwater nutrient variations in Neotropical savannas. © 2014 International Association for Vegetation Science.

Registro:

Documento: Artículo
Título:Do groundwater dynamics drive spatial patterns of tree density and diversity in Neotropical savannas?
Autor:Villalobos-Vega, R.; Salazar, A.; Miralles-Wilhelm, F.; Haridasan, M.; Franco, A.C.; Goldstein, G.
Filiación:School of the Environmental Science, University of Technology, PO Box 123, Broadway, Sydney, NSW 2007, Australia
National Center for Groundwater Research and Training, University of Technology, PO Box 123, Broadway, Sydney, NSW 2007, Australia
Department of Biology, University of Miami, PO Box 12 249118, Coral Gables, FL 33124, United States
Department of Atmospheric and Ocean Sciences, University of Maryland, 5825 University Research Ct., College Park, MD 20740, United States
Departamento de Ecologia, Universidade de Brasília, Caixa Postal 04457, Brasília, DF 70904-970, Brazil
Departamento de Botanica, Universidade de Brasília, Caixa Postal 04457, Brasília, DF 70904-970, Brazil
Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) and Lab. de Ecologia Funcional, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
Palabras clave:Hydrological cycle; Soil nutrients; Topographic gradients; Tree cover; Water table
Año:2014
Volumen:25
Número:6
Página de inicio:1465
Página de fin:1473
DOI: http://dx.doi.org/10.1111/jvs.12194
Título revista:Journal of Vegetation Science
Título revista abreviado:J. Veg. Sci.
ISSN:11009233
CODEN:JVESE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_11009233_v25_n6_p1465_VillalobosVega

Referencias:

  • Arora, V., Modeling vegetation as a dynamic component in soil-vegetation-atmosphere transfer schemes and hydrological models (2002) Reviews of Geophysics, 40, pp. 31-326
  • Bucci, S.J., Scholz, F.G., Goldstein, G., Hoffmann, W.A., Meinzer, F.C., Franco, A.C., Giambelluca, T., Miralles-Wilhelm, F., Controls on stand transpiration and soil water utilization along a tree density gradient in a Neotropical savanna (2008) Agricultural and Forest Meteorology, 148, pp. 839-849
  • Eiten, G., The cerrado vegetation of Brazil (1972) Botanical Review, 38, pp. 201-341
  • Eiten, G., (2001) Vegetação Natural do Distrito Deferal, , Editora UnB, Edição SEBRAE, Brasília, BR
  • Furley, P., The nature and diversity of neotropical savanna vegetation with particular reference to the Brazilian cerrados (1999) Global Ecology and Biogeography, 8, pp. 223-241
  • Garofalo, C.R., (2001) Efeitos do aumento da disponibilidade de nutrients na dinámica de nutrientes en plantas herbáceas e solo em uma área de cerrado stricto sensu., , M.S. thesis, University of Brasilia, Brasilia, BR
  • Goedhart, C.M., Pataki, D.E., Ecosystems effects of groundwater depth in Owens Valley, California (2011) Ecohydrology, 4, pp. 458-468
  • Goldstein, G., Meinzer, F.C., Bucci, S.J., Scholz, F.G., Franco, A.C., Hoffmann, W.A., Water economy of Neotropical savanna trees: six paradigms revisited (2008) Tree Physiology, 28, pp. 395-404
  • Goodland, R., Physiognomic analysis of cerrado vegetation of central Brazil (1971) Journal of Ecology, 59, pp. 411-419
  • Goodland, R., Pollard, R., Brazilian cerrado vegetation-fertility gradient (1973) Journal of Ecology, 61, pp. 219-224
  • Gottsberger, G., Silberbauer-Gottsberger, I., (2006) Life in the Cerrado, a South American tropical seasonal ecosystem, 1. , Reta, Ulm, DE
  • Groeneveld, D.P., Or, D., Water table induced shrub-herbaceous ecotone - Hydraulic management implications (1994) Water Resources Bulletin, 30, pp. 911-920
  • Haridasan, M., Nutritional adaptations of native plants of the cerrado biome in acid soils (2008) Brazilian Journal of Plant Physiology, 20, pp. 183-195
  • Hutjes, R.W.A., Kabat, P., Running, S.W., Shuttleworth, W.J., Field, C., Bass, B., da Silva Dias, M.A.F., Vorosmarty, C.J., Biospheric aspects of the hydrological cycle - Preface (1998) Journal of Hydrology, 213, pp. 1-21
  • Jackson, P.C., Meinzer, F.C., Bustamante, M., Goldstein, G., Franco, A., Rundel, P.W., Caldas, L., Causin, F., Partitioning of soil water among tree species in a Brazilian cerrado ecosystem (1999) Tree Physiology, 19, pp. 717-724
  • Joly, C.A., Crowford, R.M.M., Germination and some aspects of the metabolism of Chorisia speciosa (St. Hil.) seeds under anoxia (1983) Revista Brasileira de Botânica, 6, pp. 85-90
  • Lenssen, J.P.M., Menting, F.B.J., Van der Putten, W.H., Plant responses to simultaneous stress of waterlogging and shade: amplified or hierarchical effects? (2003) New Phytologist, 157, pp. 281-290
  • Lopes, A.S., Cox, F.R., Cerrado Vegetation in Brazil - Edaphic gradient (1977) Agronomy Journal, 69, pp. 828-831
  • Maia, J.M.F., Nascimento, R.S.C., Haridasan, M., Relações solo-vegetação na Reserva Ecológica do IBGE no Distrito Federal (2011) Reserva Ecológica do IBGE: Biodiversidade Terrestre, 1, pp. 149-159. , In: Ribeiro, M.L. (Org.). Reserva Ecológica/IBGE, Coordenação de Recursos Naturais e Estudos Ambientais, Rio de Janeiro, BR
  • Malik, A.I., Colmer, T.D., Lambers, H., Schortemeyer, M., Changes in physiological and morphological traits of roots and shoots of wheat in response to different depths of waterlogging (2001) Australian Journal of Plant Physiology, 28, pp. 1121-1131
  • Mata-Gonzales, R., McLendon, T., Martin, D.W., Trlica, M.J., Pearce, R.A., Vegetation as affected by groundwater depth and microtopography in a shallow aquifer area of the Great Basin (2012) Ecohydrology, 5, pp. 54-63
  • Mendonça, R.C., Felfili, J.M., Walter, B.M.T., Silva Jr, M.C., Rezende, A.V., Filgueiras, T.S., Nogueira, P.E., Flora vascular do bioma Cerrado: um checklist com 12.356 espécies (2008) Cerrado: ecología e flora, pp. 289-556. , In: Sano, S.M. & Almeida, S.P. (eds.). EMBRAPA - CPAC, Planaltina, BR
  • Mendoza, R., Escudero, V., Garcia, I., Plant growth, nutrient acquisition and mycorrhizal symbioses of a waterlogging tolerant legume (Lotus glaber Mill.) in a saline sodic soil (2005) Plant and Soil, 275, pp. 305-315
  • Moreira, A.G., Effects of fire protection on savanna structure in central Brazil (2000) Journal of Biogeography, 27, pp. 1021-1029
  • Moreira, M.Z., Scholtz, F.G., Bucci, S.J., Sternberg, L.S., Goldstein, G., Meinzer, F.C., Franco, A.C., Hydraulic lift in a Neotropical savanna (2003) Functional Ecology, 17, pp. 573-581
  • Oliveira Filho, A.T., Shepherd, G.J., Martins, F.R., Stubblebine, W.H., Environmental factors affecting physiognomic and floristic variation in an area of cerrado in central Brazil (1989) Journal of Tropical Ecology, 5, pp. 413-431
  • Oliveira, V.C., Joly, C.A., Flooding tolerance of Calophyllum brasiliens Camb (Clusiaceae) morphological, physiological and growth responses (2010) Trees-Structure and Function, 24, pp. 185-193
  • Ratter, J.A., Ribeiro, J.F., Bridgewater, S., The Brazilian cerrado vegetation and threats to its biodiversity (1997) Annals of Botany, 80, pp. 223-230
  • Rodriguez-Iturbe, I., D'Odorico, P., Porporato, A., Ridolfi, L., On the spatial and temporal links between vegetation, climate, and soil moisture (1999) Water Resources Research, 35, pp. 3709-3722
  • Rossatto, D.R., Silva, L.C.R., Villalobos-Vega, R., Sternberg, L.S.L., Franco, A.C., Depth of water uptake in woody plants relates to groundwater level and vegetation structure along a topographic gradient in a neotropical savanna (2012) Environmental and Experimental Botany, 77, pp. 259-266
  • Ruggiero, P.G.C., Batalha, M.A., Pivello, V.R., Meirelles, S.T., Soil-vegetation relationships in cerrado (Brazilian savanna) and semi-deciduous forest, Southeastern Brazil (2002) Plant Ecology, 160, pp. 1-16
  • Ruggiero, P.G.C., Pivello, V.R., Sparovek, G., Teramoto, E., PiresNeto, A.G., Relação entre solo, vegetação e topografia em área de cerrado (Parque Estadual de Vassununga, SP): como se expressa em mapeamentos? (2006) Acta Botanica Brasilica, 20, pp. 383-394
  • Scholz, F.G., Bucci, S.J., Goldstein, G., Meinzer, F.C., Franco, A.C., Hydraulic redistribution of soil water by Neotropical savanna trees (2002) Tree Physiology, 22, pp. 603-612
  • Scholz, F.G., Bucci, S.J., Goldstein, G., Meinzer, F.C., Franco, A.C., Salazar, A., Plant and stand-level variation in biophysical and physiological traits along tree density gradients in the cerrado (2008) Brazilian Journal of Plant Physiology, 20, pp. 217-232
  • Snowden, R.E.D., Wheeler, B.D., Chemical changes in selected wetland plant species with increasing Fe supply, with specific reference to root precipitates and Fe tolerance (1995) New Phytologist, 131, pp. 503-520
  • Sokal, R.R., Rohlf, F.J., (1995) Biometry: the principles and practices of statistics in biological research, , W.H. Freeman, New York, NY
  • Villalobos-Vega, R., Goldstein, G., Haridasan, M., Franco, A.C., Miralles-Wilhelm, F., Scholz, F.G., Bucci, S.J., Leaf litter manipulation alter soil physicochemical propertiesand tree growth in a Neotropical savanna (2011) Plant and Soil, 346, pp. 385-397
  • Wheeler, B.D., Alfarraj, M.M., Cook, R.E.D., Iron toxicity to plants in base-rich wetlands - comparative effects on the distribution and growth of Epilobium hirsutum L and Juncus subnodulosus Schrank (1985) New Phytologist, 100, pp. 653-669

Citas:

---------- APA ----------
Villalobos-Vega, R., Salazar, A., Miralles-Wilhelm, F., Haridasan, M., Franco, A.C. & Goldstein, G. (2014) . Do groundwater dynamics drive spatial patterns of tree density and diversity in Neotropical savannas?. Journal of Vegetation Science, 25(6), 1465-1473.
http://dx.doi.org/10.1111/jvs.12194
---------- CHICAGO ----------
Villalobos-Vega, R., Salazar, A., Miralles-Wilhelm, F., Haridasan, M., Franco, A.C., Goldstein, G. "Do groundwater dynamics drive spatial patterns of tree density and diversity in Neotropical savannas?" . Journal of Vegetation Science 25, no. 6 (2014) : 1465-1473.
http://dx.doi.org/10.1111/jvs.12194
---------- MLA ----------
Villalobos-Vega, R., Salazar, A., Miralles-Wilhelm, F., Haridasan, M., Franco, A.C., Goldstein, G. "Do groundwater dynamics drive spatial patterns of tree density and diversity in Neotropical savannas?" . Journal of Vegetation Science, vol. 25, no. 6, 2014, pp. 1465-1473.
http://dx.doi.org/10.1111/jvs.12194
---------- VANCOUVER ----------
Villalobos-Vega, R., Salazar, A., Miralles-Wilhelm, F., Haridasan, M., Franco, A.C., Goldstein, G. Do groundwater dynamics drive spatial patterns of tree density and diversity in Neotropical savannas?. J. Veg. Sci. 2014;25(6):1465-1473.
http://dx.doi.org/10.1111/jvs.12194