Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

While MoS2 and WS2 nanostructures gain an increasing importance in a number of recent technological applications, the control of their structure as a function of their size and their environment appears of prominent importance. In the present study which relies on first-principles simulations, we predict the dimerized 1T′ structural phase to be the actual ground state of MoS2, WS2, and MoSe2 zigzag nanoribbons of small width and monolayer thickness. We assign this result to the competition between edge energy - which favors the nonpolar 1T′ edges over the polar 1H edges - and the energy of atoms in the center of the ribbons - which favors the 1H ground state of the infinite monolayers. A metal-to-semiconductor transition accompanies the structural transition. At variance, ZrS2 zigzag ribbons are predicted to display the 1T structure whatever their width. In compounds of major technological importance, such structural and electronic flexibility associated with polarity effects opens the possibility for controlling the ribbon type during synthesis. © 2015 American Physical Society.

Registro:

Documento: Artículo
Título:Prediction of structural and metal-to-semiconductor phase transitions in nanoscale MoS2, WS2, and other transition metal dichalcogenide zigzag ribbons
Autor:Güller, F.; Llois, A.M.; Goniakowski, J.; Noguera, C.
Filiación:Centro Atómico Constituyentes, GIyANN, CNEA, Av. Gral. Paz 1499, San Martín, Buenos Aires, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Rivadavia 1917 (C1033AAJ), Buenos Aires, Argentina
Laboratorio Internacional Franco-Argentino en Nanociencias (LIFAN), Argentina
Departamento de Física Juan José Giambiagi, FCEyN-UBA, Intendente Güiraldes 2160 (C1428EGA), Buenos Aires, Argentina
CNRS, Institut des Nanosciences de Paris, UMR 7588, 4 place Jussieu, Paris cedex 05, 75252, France
UPMC Université Paris 06, INSP, UMR 7588, 4 place Jussieu, Paris cedex 05, 75252, France
Año:2015
Volumen:91
Número:7
DOI: http://dx.doi.org/10.1103/PhysRevB.91.075407
Título revista:Physical Review B - Condensed Matter and Materials Physics
Título revista abreviado:Phys. Rev. B Condens. Matter Mater. Phys.
ISSN:10980121
CODEN:PRBMD
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10980121_v91_n7_p_Guller

Referencias:

  • Wang, Q.H., Kalantar-Zadeh, K., Kis, A., Coleman, J.N., Strano, M.S., (2012) Nat. Nanotechnol., 7, p. 699. , 1748-3387
  • Kaul, A.B., (2014) J. Mater. Res., 29, p. 348. , JMREEE 0884-2914
  • Helveg, S., Lauritsen, J.V., Lægsgaard, E., Stensgaard, I., Nørskov, J.K., Clausen, B.S., Topsøe, H., Besenbacher, F., (2000) Phys. Rev. Lett., 84, p. 951. , PRLTAO 0031-9007
  • Lauritsen, J., Bollinger, M.V., Jacobsen, E.L.K.W., Nørskov, J.K., Clausen, B.S., Topsøe, H., Besenbacher, F., (2004) J. Catal., 221, p. 510. , JCTLA5 0021-9517
  • Schweiger, H., Raybaud, P., Kresse, G., Toulhoat, H., (2002) J. Catal., 207, p. 76. , JCTLA5 0021-9517
  • Shidpour, R., Manteghian, M., (2009) Chem. Phys., 360, p. 97. , CMPHC2 0301-0104
  • Peimyoo, N., Shang, J., Cong, C., Shen, X., Wu, X., Yeow, E.K.L., Yu, T., (2013) ACS Nano, 7, p. 10985. , 1936-0851
  • Bollinger, M.V., Lauritsen, J.V., Jacobsen, K.W., Nørskov, J.K., Helveg, S., Besenbacher, F., (2001) Phys. Rev. Lett., 87, p. 196803. , PRLTAO 0031-9007
  • Bollinger, M.V., Jacobsen, K.W., Nørskov, J.K., (2003) Phys. Rev. B., 67, p. 085410. , PRBMDO 0163-1829
  • Botello-Mendez, A.R., López-Urías, F., Terrones, M., Terrones, H., (2009) Nanotechnology, 20, p. 325703. , NNOTER 0957-4484
  • Ataca, C., Sahin, H., Akturk, E., Ciraci, S., (2011) J. Phys. Chem. C, 115, p. 3934. , 1932-7447
  • Erdogan, E., Popov, I., Enyashin, A., Seifert, G., (2012) Eur. Phys. J. B, 85, p. 33. , EPJBFY 1434-6028
  • Huo, N., Li, Y., Kang, J., Li, R., Xia, Q., Li, J., (2014) Appl. Phys. Lett., 104, p. 202406. , APPLAB 0003-6951
  • Ouyang, F., Ni, X., Yang, Z., Chen, Y., Zheng, X., Xiong, X., (2013) J. Appl. Phys., 114, p. 213701. , JAPIAU 0021-8979
  • Güller, F., Llois, A.M., Goniakowski, J., Noguera, C., (2013) Phys. Rev. B, 87, p. 205423. , PRBMDO 1098-0121
  • Goniakowski, J., Finocchi, F., Noguera, C., (2008) Rep. Prog. Phys, 71, p. 16501. , RPPHAG 0034-4885
  • Noguera, C., Goniakowski, J., (2013) Chem. Rev., 113, p. 4073. , CHREAY 0009-2665
  • Goniakowski, J., Noguera, C., Giordano, L., (2004) Phys. Rev. Lett., 93, p. 215702. , PRLTAO 0031-9007
  • Claeyssens, F., Freeman, C.L., Allan, N.L., Sun, Y., Ashfold, M.N., Harding, J.H., (2005) J. Mater. Chem., 15, p. 139. , JMACEP 0959-9428
  • Tusche, C., Meyerheim, H.L., Kirschner, J., (2007) Phys. Rev. Lett., 99, p. 026102. , PRLTAO 0031-9007
  • Freeman, C.L., Claeyssens, F., Allan, N.L., Harding, J.H., (2006) Phys. Rev. Lett., 96, p. 066102. , PRLTAO 0031-9007
  • Morgan, B.J., (2009) Phys. Rev. B, 80, p. 174105. , PRBMDO 1098-0121
  • Lin, Y.-C., Dumcenco, D.O., Huang, Y.-S., Suenaga, K., (2014) Nat. Nanotechnol., 9, p. 391. , 1748-3387
  • Yang, D., Sandoval, S.J., Divigalpitiya, W.M.R., Irwin, J.C., Frindt, R.F., (1991) Phys. Rev. B, 43, p. 12053. , PRBMDO 0163-1829
  • Qin, X.R., Yang, D., Frindt, R.F., Irwin, J.C., (1991) Phys. Rev. B, 44, p. 3490. , PRBMDO 0163-1829
  • Prouzet, E., Heising, J., Kanatzidis, M.G., (2003) Chem. Mater., 15, p. 412. , CMATEX 0897-4756
  • Eda, G., Yamaguchi, H., Voiry, D., Fujita, T., Chen, M., Chhowalla, M., (2011) Nano Lett., 11, p. 5111. , NALEFD 1530-6984
  • Eda, G., Fujita, T., Yamaguchi, H., Voiry, D., Chen, M., Chhowalla, M., (2012) ACS Nano, 6, p. 7311. , 1936-0851
  • Hu, T., Li, R., Dong, J., (2013) J. Chem. Phys., 139, p. 174702. , JCPSA6 0021-9606
  • Calandra, M., (2013) Phys. Rev. B, 88, p. 245428. , PRBMDO 1098-0121
  • Kresse, G., Furthmüller, J., (1996) Phys. Rev. B, 54, p. 11169. , PRBMDO 0163-1829
  • Kresse, G., Joubert, D., (1999) Phys. Rev. B, 59, p. 1758. , PRBMDO 1098-0121
  • Perdew, J.P., Wang, Y., (1992) Phys. Rev. B, 45, p. 13244. , PRBMDO 0163-1829
  • Bader, R.F.W., (1991) Chem. Rev., 91, p. 893. , CHREAY 0009-2665
  • Tang, W., Sanville, E., Henkelman, G., (2009) J. Phys. Condens. Matter, 21, p. 084204. , JCOMEL 0953-8984

Citas:

---------- APA ----------
Güller, F., Llois, A.M., Goniakowski, J. & Noguera, C. (2015) . Prediction of structural and metal-to-semiconductor phase transitions in nanoscale MoS2, WS2, and other transition metal dichalcogenide zigzag ribbons. Physical Review B - Condensed Matter and Materials Physics, 91(7).
http://dx.doi.org/10.1103/PhysRevB.91.075407
---------- CHICAGO ----------
Güller, F., Llois, A.M., Goniakowski, J., Noguera, C. "Prediction of structural and metal-to-semiconductor phase transitions in nanoscale MoS2, WS2, and other transition metal dichalcogenide zigzag ribbons" . Physical Review B - Condensed Matter and Materials Physics 91, no. 7 (2015).
http://dx.doi.org/10.1103/PhysRevB.91.075407
---------- MLA ----------
Güller, F., Llois, A.M., Goniakowski, J., Noguera, C. "Prediction of structural and metal-to-semiconductor phase transitions in nanoscale MoS2, WS2, and other transition metal dichalcogenide zigzag ribbons" . Physical Review B - Condensed Matter and Materials Physics, vol. 91, no. 7, 2015.
http://dx.doi.org/10.1103/PhysRevB.91.075407
---------- VANCOUVER ----------
Güller, F., Llois, A.M., Goniakowski, J., Noguera, C. Prediction of structural and metal-to-semiconductor phase transitions in nanoscale MoS2, WS2, and other transition metal dichalcogenide zigzag ribbons. Phys. Rev. B Condens. Matter Mater. Phys. 2015;91(7).
http://dx.doi.org/10.1103/PhysRevB.91.075407