Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We study the heat transport along an edge state of a two-dimensional electron gas in the quantum Hall regime, in contact to two reservoirs at different temperatures. We consider two exactly solvable models for the edge state coupled to the reservoirs. The first one corresponds to filling ν=1 and tunneling coupling to the reservoirs. The second one corresponds to integer or fractional filling of the sequence ν=1/m (with m odd), and capacitive coupling to the reservoirs. In both cases, we solve the problem by means of nonequilibrium Green function formalism. We show that heat propagates chirally along the edge in the two setups. We identify two temperature regimes, defined by Δ, the mean level spacing of the edge. At low temperatures, T<Δ, finite size effects play an important role in heat transport, for both types of contacts. The nature of the contacts manifests itself in different power laws for the thermal conductance as a function of the temperature. For capacitive couplings, a highly nonuniversal behavior takes place, through a prefactor that depends on the length of the edge as well as on the coupling strengths and the filling fraction. For larger temperatures, T>Δ, finite-size effects become irrelevant, but the heat transport strongly depends on the strength of the edge-reservoir interactions, in both cases. The thermal conductance for tunneling coupling grows linearly with T, whereas for the capacitive case, it saturates to a value that depends on the coupling strengths and the filling factors of the edge and the contacts. © 2013 American Physical Society.

Registro:

Documento: Artículo
Título:Heat transport through quantum Hall edge states: Tunneling versus capacitive coupling to reservoirs
Autor:Aita, H.; Arrachea, L.; Naón, C.; Fradkin, E.
Filiación:Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, cc 67, 1900, La Plata, Argentina
Departamento de Física and IFIBA, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, 1428, Buenos Aires, Argentina
Department of Physics, Institute for Condensed Matter Theory, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, IL 61801-3080, United States
Año:2013
Volumen:88
Número:8
DOI: http://dx.doi.org/10.1103/PhysRevB.88.085122
Título revista:Physical Review B - Condensed Matter and Materials Physics
Título revista abreviado:Phys. Rev. B Condens. Matter Mater. Phys.
ISSN:10980121
CODEN:PRBMD
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10980121_v88_n8_p_Aita

Referencias:

  • Wen, X.-G., (1995) Adv. Phys., 44, p. 405. , For a detailed discussion of edge states of quantum Hall systems see, ADPHAH 0001-8732 10.1080/00018739500101566
  • Chang, A.M., Chiral Luttinger liquids at the fractional quantum Hall edge (2003) Reviews of Modern Physics, 75 (4), pp. 1449-1505. , DOI 10.1103/RevModPhys.75.1449
  • Fradkin, E., (2013) Field Theories of Condensed Matter Systems, , Cambridge University Press, Cambridge, UK
  • Laughlin, R.B., (1981) Phys. Rev. B, 23, p. 5632. , PRBMDO 1098-0121 10.1103/PhysRevB.23.5632
  • Halperin, B.I., (1982) Phys. Rev. B, 25, p. 2185. , PRBMDO 1098-0121 10.1103/PhysRevB.25.2185
  • Büttiker, M., (1988) Phys. Rev. B, 38, p. 9375. , PRBMDO 1098-0121 10.1103/PhysRevB.38.9375
  • Wen, X.G., Niu, Q., (1990) Phys. Rev. B, 41, p. 9377. , PRBMDO 1098-0121 10.1103/PhysRevB.41.9377
  • Wen, X.G., (1990) Phys. Rev. Lett., 64, p. 2206. , PRLTAO 0031-9007 10.1103/PhysRevLett.64.2206
  • Wen, X.G., (1990) Phys. Rev. B, 41, p. 12838. , PRBMDO 1098-0121 10.1103/PhysRevB.41.12838
  • Kane, C.L., Fisher, M.P.A., (1992) Phys. Rev. Lett., 68, p. 1220. , PRLTAO 0031-9007 10.1103/PhysRevLett.68.1220
  • Kane, C.L., Fisher, M.P.A., (1992) Phys. Rev. B, 46, p. 15233. , PRBMDO 1098-0121 10.1103/PhysRevB.46.15233
  • Kane, C.L., Fisher, M.P.A., (1994) Phys. Rev. Lett., 72, p. 724. , PRLTAO 0031-9007 10.1103/PhysRevLett.72.724
  • Granger, G., Eisenstein, J.P., Reno, J.L., (2009) Phys. Rev. Lett., 102, p. 086803. , PRLTAO 0031-9007 10.1103/PhysRevLett.102.086803
  • Bid, A., Ofek, N., Inoue, H., Heiblum, M., Kane, C.L., Umansky, V., Mahalu, D., (2010) Nature (London), 466, p. 585. , NATUAS 0028-0836 10.1038/nature09277
  • Altimiras, C., Le Sueur, H., Gennser, U., Cavanna, A., Mailly, D., Pierre, F., (2010) Phys. Rev. Lett., 105, p. 226804. , PRLTAO 0031-9007 10.1103/PhysRevLett.105.226804
  • Venkatachalam, V., Hart, S., Pfeiffer, L., West, K., Yacoby, A., (2012) Nat. Phys., 8, p. 676. , 1745-2473 10.1038/nphys2384
  • Altimiras, C., Le Sueur, H., Gennser, U., Anthore, A., Cavanna, A., Mailly, D., Pierre, F., (2012) Phys. Rev. Lett., 109, p. 026803. , PRLTAO 0031-9007 10.1103/PhysRevLett.109.026803
  • Gurman, I., Sabo, R., Heiblum, M., Umansky, V., Mahalu, D., (2012) Nat. Commun., 3, p. 1289. , 2041-1723 10.1038/ncomms2305
  • Arrachea, L., Fradkin, E., (2011) Phys. Rev. B, 84, p. 235436. , PRBMDO 1098-0121 10.1103/PhysRevB.84.235436
  • Kim, B.S., Zhou, W., Yash, Y.D., Zhou, C., Işik, N., Grayson, M., (2012) Rev. Sci. Instrum., 83, p. 024703. , RSINAK 0034-6748 10.1063/1.3677331
  • McClure, D.T., Zhang, Y., Rosenow, B., Levenson-Falk, E.M., Marcus, C.M., Pfeiffer, L.N., West, K.W., (2009) Phys. Rev. Lett., 103, p. 206806. , PRLTAO 0031-9007 10.1103/PhysRevLett.103.206806
  • De, C., Chamon, C., Freed, D.E., Wen, X.G., (1995) Phys. Rev. B, 51, p. 2363. , PRBMDO 1098-0121 10.1103/PhysRevB.51.2363
  • De, C., Chamon, C., Fradkin, E., (1997) Phys. Rev. B, 56, p. 2012. , 10.1103/PhysRevB.56.2012
  • Cappelli, A., Huerta, M., Zemba, G., (2002) Nucl. Phys. B, 636, p. 568. , NUPBBO 0550-3213 10.1016/S0550-3213(02)00340-1
  • Grosfeld, E., Das, S., (2009) Phys. Rev. Lett., 102, p. 106403. , PRLTAO 0031-9007 10.1103/PhysRevLett.102.106403
  • Kovrizhin, D.L., Chalker, J.T., (2012) Phys. Rev. Lett., 109, p. 106403. , PRLTAO 0031-9007 10.1103/PhysRevLett.109.106403
  • Kane, C.L., Fisher, M., (1997) Phys. Rev., 55, p. 15832. , PRBMDO 1098-0121 10.1103/PhysRevB.55.15832
  • Viola, G., Das, S., Grosfeld, E., Stern, A., (2012) Phys. Rev. Lett., 109, p. 146801. , PRLTAO 0031-9007 10.1103/PhysRevLett.109.146801
  • Stone, M., (1994) Bosonization, , World Scientific, Singapore
  • Haldane, F.D.M., (1981) J. Phys. C, 14, p. 2585. , JPSOAW 0022-3719 10.1088/0022-3719/14/19/010
  • Karevski, D., Platini, T., (2009) Phys. Rev. Lett., 102, p. 207207. , PRLTAO 0031-9007 10.1103/PhysRevLett.102.207207
  • Prosen, T., Zuncovic, B., (2010) New J. Phys., 12, p. 025016. , NJOPFM 1367-2630 10.1088/1367-2630/12/2/025016
  • Pathria, R.K., (1996) Statistical Mechanics, , Butterworth-Heinemann, Oxford
  • Engquist, H.L., Anderson, P.W., (1981) Phys. Rev. B, 24, p. 1151. , PRBMDO 1098-0121 10.1103/PhysRevB.24.1151
  • Pendry, J.B., (1983) J. Phys. A: Math. Gen., 16, p. 2161. , JPHAC5 0305-4470 10.1088/0305-4470/16/10/012
  • Haug, S.H., Jauho, A.P., (1996) Quantum Kinetics in Transport and Optics of Semiconductors, , Springer-Verlag, Berlin, Heidelberg
  • Gradshteyn, I.S., Ryzhik, I.M., (1994) Table of Integrals, Series and Products, , Academic Press, New York

Citas:

---------- APA ----------
Aita, H., Arrachea, L., Naón, C. & Fradkin, E. (2013) . Heat transport through quantum Hall edge states: Tunneling versus capacitive coupling to reservoirs. Physical Review B - Condensed Matter and Materials Physics, 88(8).
http://dx.doi.org/10.1103/PhysRevB.88.085122
---------- CHICAGO ----------
Aita, H., Arrachea, L., Naón, C., Fradkin, E. "Heat transport through quantum Hall edge states: Tunneling versus capacitive coupling to reservoirs" . Physical Review B - Condensed Matter and Materials Physics 88, no. 8 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.085122
---------- MLA ----------
Aita, H., Arrachea, L., Naón, C., Fradkin, E. "Heat transport through quantum Hall edge states: Tunneling versus capacitive coupling to reservoirs" . Physical Review B - Condensed Matter and Materials Physics, vol. 88, no. 8, 2013.
http://dx.doi.org/10.1103/PhysRevB.88.085122
---------- VANCOUVER ----------
Aita, H., Arrachea, L., Naón, C., Fradkin, E. Heat transport through quantum Hall edge states: Tunneling versus capacitive coupling to reservoirs. Phys. Rev. B Condens. Matter Mater. Phys. 2013;88(8).
http://dx.doi.org/10.1103/PhysRevB.88.085122