Artículo

Güller, F.; Llois, A.M.; Goniakowski, J.; Noguera, C. "Polarity effects in unsupported polar nanoribbons" (2013) Physical Review B - Condensed Matter and Materials Physics. 87(20)
La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We analyze the characteristics of polarity in unsupported nanoribbons with zigzag edges, by a combination of analytic models, semiempirical Hartree-Fock simulations, and first-principles approach. We consider two materials with widely different ionic-covalent character, MgO and MoS2, and two polarity healing mechanisms: the so-called electronic compensation in ribbons with pristine edges, and ionic compensation in ribbons with an adequately chosen density of missing edge ions. The general expression of compensating charges, the edge metallization and spin polarization in the electronic mechanism, and the efficiency of the ionic mechanism are similar to those known in thin films and at polar surfaces. Differences, however, exist and are related to the low dimensionality, the atomic structure, and the strong undercoordination of edge atoms in nanoribbons. Polarity signatures are specified and a discussion of the possible origins of metallic edge states in these low dimensional objects is provided. © 2013 American Physical Society.

Registro:

Documento: Artículo
Título:Polarity effects in unsupported polar nanoribbons
Autor:Güller, F.; Llois, A.M.; Goniakowski, J.; Noguera, C.
Filiación:Centro Atómico Constituyentes, GIyANN, CNEA, Avenida General Paz 1499, San Martín, Buenos Aires, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas, Avenida Rivadavia 1917 (C1033AAJ), Buenos Aires, Argentina
Laboratorio Internacional Franco-Argentino en Nanociencias (LIFAN), Argentina
Departamento de Física Juan José Giambiagi, FCEyN-UBA, Intendente Güiraldes 2160 (C1428EGA), Buenos Aires, Argentina
CNRS, Institut des Nanosciences de Paris, UMR 7588, 4 place Jussieu, 75252 Paris Cedex 05, France
UPMC Université Paris 06, INSP, UMR 7588, 4 place Jussieu, 75252 Paris Cedex 05, France
Año:2013
Volumen:87
Número:20
DOI: http://dx.doi.org/10.1103/PhysRevB.87.205423
Título revista:Physical Review B - Condensed Matter and Materials Physics
Título revista abreviado:Phys. Rev. B Condens. Matter Mater. Phys.
ISSN:10980121
CODEN:PRBMD
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10980121_v87_n20_p_Guller

Referencias:

  • Noguera, C., (2000) J. Phys.: Condens. Matter, 12, p. 367. , JCOMEL 0953-8984 10.1088/0953-8984/12/31/201
  • Goniakowski, J., Finocchi, F., Noguera, C., (2008) Rep. Prog. Phys., 71, p. 016501. , RPPHAG 0034-4885 10.1088/0034-4885/71/1/016501
  • Freund, H.-J., Pacchioni, G., (2008) Chem. Soc. Rev., 37, p. 2224. , 0306-0012 10.1039/b718768h
  • Nilius, N., (2009) Surf. Sci. Rep., 64, p. 595. , SSREDI 0167-5729 10.1016/j.surfrep.2009.07.004
  • Netzer, F.P., Allegretti, F., Surnev, S., (2010) J. Vac. Sci. Technol. B, 28, p. 1. , JVTBD9 0734-211X 10.1116/1.3268503
  • Ferrari, A.M., Casassa, S., Pisani, C., Altieri, S., Rota, A., Valeri, S., (2005) Surf. Sci., 588, p. 160. , SUSCAS 0039-6028 10.1016/j.susc.2005.05.043
  • Agnoli, S., Barolo, A., Granozzi, G., Ferrari, A.M., Pisani, C., (2007) J. Phys. Chem. C, 111, p. 19066. , 1932-7447 10.1021/jp0763174
  • Benedetti, S., Nilius, N., Torelli, P., Renaud, G., Freund, H.-J., Valeri, S., (2011) J. Phys. Chem. C, 115, p. 23043. , 1932-7447 10.1021/jp207901a
  • Pan, Y., Benedetti, S., Noguera, C., Giordano, L., Goniakowski, J., Nilius, N., (2012) J. Phys. Chem. C, 116, p. 11126. , 1932-7447 10.1021/jp302302v
  • Nilius, N., Benedetti, S., Pan, Y., Myrach, P., Noguera, C., Giordano, L., Goniakowski, J., (2012) Phys. Rev. B, 86, p. 205410. , PRBMDO 1098-0121 10.1103/PhysRevB.86.205410
  • Li, Q., Newberg, J.T., Walter, E.C., Hemminger, J.C., Penner, R.M., Polycrystalline Molybdenum Disulfide (2H-MoS2) Nano- and Microribbons by Electrochemical/Chemical Synthesis (2004) Nano Letters, 4 (2), pp. 277-281. , DOI 10.1021/nl035011f
  • Zhang, J., Soon, J.M., Loh, K.P., Yin, J., Ding, J., Sullivian, M.B., Wu, P., Magnetic molybdenum disulfide nanosheet films (2007) Nano Letters, 7 (8), pp. 2370-2376. , DOI 10.1021/nl071016r
  • Slender, C.L., Greyson, E.C., Babayan, Y., Odom, T.W., Patterned MoS2 nanostructures over centimeter-square areas (2005) Advanced Materials, 17 (23), pp. 2837-2841. , DOI 10.1002/adma.200500856
  • Noguera, C., Goniakowski, J., Chem. Rev.
  • Botello-Mendez, A.R., Martinez-Martinez, M.T., Lopez-Urias, F., Terrones, M., Terrones, H., Metallic edges in zinc oxide nanoribbons (2007) Chemical Physics Letters, 448 (4-6), pp. 258-263. , DOI 10.1016/j.cplett.2007.10.023, PII S0009261407013802
  • Botello-Mendez, A.R., Lopez-Urias, F., Terrones, M., Terrones, H., (2008) Nano Lett., 8, p. 1562. , NALEFD 1530-6984 10.1021/nl072511q
  • Topsakal, M., Cahangirov, S., Bekaroglu, E., Ciraci, S., (2009) Phys. Rev. B, 80, p. 235119. , PRBMDO 1098-0121 10.1103/PhysRevB.80.235119
  • Wang, Y., Wang, B., Zhang, Q., Shi, D., Yunoki, S., Kong, F., Xu, N., (2012) Solid State Commun., 152, p. 534. , SSCOA4 0038-1098 10.1016/j.ssc.2011.12.035
  • Wu, W., Lu, R., Zhang, Z., Guo, W., (2011) ACS Appl. Mater. Interfaces, 3, p. 4787. , 1944-8244 10.1021/am201271j
  • Tang, Q., Li, F., Zhou, Z., Chen, Z., (2011) J. Phys. Chem. C, 115, p. 11983. , 1932-7447 10.1021/jp204174p
  • Bollinger, M.V., Lauritsen, J.V., Jacobsen, K.W., Nørskov, J.K., Helveg, S., Besenbacher, F., (2001) Phys. Rev. Lett., 87, p. 196803. , PRLTAO 0031-9007 10.1103/PhysRevLett.87.196803
  • Pan, H., Zhang, Y.W., (2012) J. Mater. Chem., 22, p. 7280. , JMACEP 0959-9428 10.1039/c2jm15906f
  • Ataca, C., Sahin, H., Akturk, E., Ciraci, S., (2011) J. Phys. Chem. C, 115, p. 3934. , 1932-7447 10.1021/jp1115146
  • Pan, H., Zhang, Y.W., (2012) J. Phys. Chem. C, 116, p. 11752. , 1932-7447 10.1021/jp3015782
  • Shidpour, R., Manteghian, M., (2009) Chem. Phys., 360, p. 97. , CMPHC2 0301-0104 10.1016/j.chemphys.2009.04.015
  • Erdogan, E., Popov, I.H., Enyashin, A.N., Seifert, G., (2012) Eur. Phys. J. B, 85, p. 33. , EPJBFY 1434-6028 10.1140/epjb/e2011-20456-7
  • Li, Y., Zhou, Z., Zhang, S., Chen, Z., (2008) J. Am. Chem. Soc., 130, p. 16739. , JACSAT 0002-7863 10.1021/ja805545x
  • Duttaa, S., Pati, S.K., (2010) J. Mater. Chem., 20, p. 8207. , JMACEP 0959-9428 10.1039/c0jm00261e
  • Acik, M., Chabal, Y.J., (2011) Jpn. J. Appl. Phys., 50, p. 070101. , JAPLD8 0021-4922 10.1143/JJAP.50.070101
  • Goniakowski, J., Noguera, C., (2011) Phys. Rev. B, 83, p. 115413. , PRBMDO 1098-0121 10.1103/PhysRevB.83.115413
  • Goniakowski, J., Giordano, L., Noguera, C., (2013) Phys. Rev. B, 87, p. 035405. , PRBMDO 1098-0121 10.1103/PhysRevB.87.035405
  • Goniakowski, J., Noguera, C., Giordano, L., Using polarity for engineering oxide nanostructures: Structural phase diagram in free and supported MgO(111) ultrathin films (2004) Physical Review Letters, 93 (21), pp. 2157021-2157024. , DOI 10.1103/PhysRevLett.93.215702, 215702
  • Pecoraro, T.A., Chianelli, R.R., (1981) J. Catal., 67, p. 430. , JCTLA5 0021-9517 10.1016/0021-9517(81)90303-1
  • Fleischauer, P.D., Lince, J.R., Bertrand, P.A., Bauer, R., (1989) Langmuir, 5, p. 1009. , LANGD5 0743-7463 10.1021/la00088a022
  • Radisavlevic, B., Radenovic, A., Brivio, J., Giacometti, V., Kis, A., (2011) Nat. Nanotechnol., 6, p. 147. , 1748-3387 10.1038/nnano.2010.279
  • Nosker, R.W., Mark, P., Levine, J.D., (1970) Surf. Sci., 19, p. 291. , SUSCAS 0039-6028 10.1016/0039-6028(70)90040-3
  • Tasker, P.W., (1979) J. Phys. C, 12, p. 4977. , JPSOAW 0022-3719 10.1088/0022-3719/12/22/036
  • Martin, R.M., (1972) Phys. Rev. B, 6, p. 4874. , PRBMDO 1098-0121 10.1103/PhysRevB.6.4874
  • Noguera, C., Goniakowski, J., (2008) J. Phys.: Condens. Matter, 20, p. 264001. , JCOMEL 0953-8984 10.1088/0953-8984/20/26/264003
  • Abramowicz, M., Stegun, I.A., (1970) Handbook of Mathematical Functions, , Dover, New York
  • Goniakowski, J., Noguera, C., Giordano, L., Prediction of uncompensated polarity in ultrathin films (2007) Physical Review Letters, 98 (20), p. 205701. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevLett.98.205701&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevLett.98.205701
  • In some compounds in which the top of valence band has a strong cation character, the voltage across the ribbon would rather be ΔV=V C1-VCN, which would not qualitatively change the results of the model; Kresse, G., Hafner, J., (1993) Phys. Rev. B, 47, p. 558. , PRBMDO 1098-0121 10.1103/PhysRevB.47.558
  • Kresse, G., Furthmüller, J., (1996) Phys. Rev. B, 54, p. 11169. , PRBMDO 1098-0121 10.1103/PhysRevB.54.11169
  • Blöchl, P.E., (1994) Phys. Rev. B, 50, p. 17953. , PRBMDO 1098-0121 10.1103/PhysRevB.50.17953
  • Kresse, G., Joubert, D., (1999) Phys. Rev. B, 59, p. 1758. , PRBMDO 1098-0121 10.1103/PhysRevB.59.1758
  • Perdew, J.P., Wang, Y., (1992) Phys. Rev. B, 45, p. 13244. , PRBMDO 1098-0121 10.1103/PhysRevB.45.13244
  • Very high values of the plane-wave cutoff parameter are required in order to obtain accurate values of the compensating charges δλ; Bader, R.F.W., (1991) Chem. Rev., 91, p. 983. , CHREAY 0009-2665 10.1021/cr00005a013
  • Henkelman, G., Arnaldsson, A., Jonsson, H., A fast and robust algorithm for Bader decomposition of charge density (2006) Computational Materials Science, 36 (3), pp. 354-360. , DOI 10.1016/j.commatsci.2005.04.010, PII S0927025605001849
  • Tang, W., Sanville, E., Henkelman, G., (2009) J. Phys.: Condens. Matter, 21, p. 084204. , JCOMEL 0953-8984 10.1088/0953-8984/21/8/084204
  • Goniakowski, J., Noguera, C., (1999) Phys. Rev. B, 60, p. 16120. , PRBMDO 1098-0121 10.1103/PhysRevB.60.16120
  • Pojani, A., Finocchi, F., Noguera, C., Polarity on the SrTiO3(111) and (110) surfaces (1999) Surface Science, 442 (2), pp. 179-198. , DOI 10.1016/S0039-6028(99)00911-5
  • Noguera, C., Godet, J., Goniakowski, J., (2010) Phys. Rev. B, 81, p. 155409. , PRBMDO 1098-0121 10.1103/PhysRevB.81.155409
  • D'Angelo, M., Yukawa, R., Ozawa, K., Yamamoto, S., Hirahara, T., Hasegawa, S., Silly, M.G., Matsuda, I., (2012) Phys. Rev. Lett., 108, p. 116802. , PRLTAO 0031-9007 10.1103/PhysRevLett.108.116802

Citas:

---------- APA ----------
Güller, F., Llois, A.M., Goniakowski, J. & Noguera, C. (2013) . Polarity effects in unsupported polar nanoribbons. Physical Review B - Condensed Matter and Materials Physics, 87(20).
http://dx.doi.org/10.1103/PhysRevB.87.205423
---------- CHICAGO ----------
Güller, F., Llois, A.M., Goniakowski, J., Noguera, C. "Polarity effects in unsupported polar nanoribbons" . Physical Review B - Condensed Matter and Materials Physics 87, no. 20 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.205423
---------- MLA ----------
Güller, F., Llois, A.M., Goniakowski, J., Noguera, C. "Polarity effects in unsupported polar nanoribbons" . Physical Review B - Condensed Matter and Materials Physics, vol. 87, no. 20, 2013.
http://dx.doi.org/10.1103/PhysRevB.87.205423
---------- VANCOUVER ----------
Güller, F., Llois, A.M., Goniakowski, J., Noguera, C. Polarity effects in unsupported polar nanoribbons. Phys. Rev. B Condens. Matter Mater. Phys. 2013;87(20).
http://dx.doi.org/10.1103/PhysRevB.87.205423