Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Motivated by the recent NMR experiments on ZnCu3(OH)6Cl2, we study the effect of nonmagnetic defects on the antiferromagnetic spin-1/2 kagome lattice. We use exact diagonalization methods to study the effect of two such defects on finite-size systems. Our results, obtained without adjustable parameters, are in good quantitative agreement with recent 17O NMR data. They provide support for the experimental interpretation of the presence of defects within the kagome layers due to Zn/Cu substitutions. Our results also show that disorder effects become relevant at lower temperatures, raising questions about the experimental evidence for the absence of an intrinsic spin gap in the kagome two-dimensional layers. ©2008 The American Physical Society.

Registro:

Documento: Artículo
Título:Disorder effects in the quantum kagome antiferromagnet ZnCu 3(OH)6Cl2
Autor:Rozenberg, M.J.; Chitra, R.
Filiación:Laboratoire de Physique des Solides, CNRS-UMR8502, Université de Paris-Sud, Orsay 91405, France
Departamento de Física, FCEN, Pab. I, 1428 Buenos Aires, Argentina
Laboratoire de Physique Theorique de la Matière Condenseé, UMR 7600, Universite de Pierre et Marie Curie, Jussieu, Paris-75005, France
Año:2008
Volumen:78
Número:13
DOI: http://dx.doi.org/10.1103/PhysRevB.78.132406
Título revista:Physical Review B - Condensed Matter and Materials Physics
Título revista abreviado:Phys. Rev. B Condens. Matter Mater. Phys.
ISSN:10980121
CODEN:PRBMD
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10980121_v78_n13_p_Rozenberg

Referencias:

  • Goss Levy, B., (2007) Phys. Today, 60 (2), p. 16. , PHTOAD 0031-9228
  • Shores, M.P., Nytko, E.A., Barlett, B.M., Nocera, D.G., (2005) J. Am. Chem. Soc., 127, p. 13462. , JACSAT 0002-7863 10.1021/ja053891p
  • Helton, J.S., Matan, K., Shores, M.P., Nytko, E.A., Bartlett, B.M., Yoshida, Y., Takano, Y., Lee, Y.S., (2007) Phys. Rev. Lett., 98, p. 107204. , PRLTAO 0031-9007 10.1103/PhysRevLett.98.107204
  • Ofer, O., Keren, A., Nytko, E., Shores, M., Bartlett, B., Nocera, D., Baines, C., Amato, A., arXiv:cond-mat/0610540 (unpublished); Mendels, P., Bert, F., De Vries, M.A., Olariu, A., Harrison, A., Duc, F., Trombe, J.C., Baines, C., (2007) Phys. Rev. Lett., 98, p. 077204. , PRLTAO 0031-9007 10.1103/PhysRevLett.98.077204
  • Imai, T., Nytko, E.A., Bartlett, B.M., Shores, M.P., Nocera, D.G., (2008) Phys. Rev. Lett., 100, p. 077203. , PRLTAO 0031-9007 10.1103/PhysRevLett.100.077203
  • Misguich, G., Lhuillier, C., (2004) Frustrated Spin Systems, pp. 229-306. , World Scientific, Singapore
  • Lhuillier, C., Misguich, G., (2001) High Magnetic Fields, pp. 161-190. , Springer Lecture Notes in Physics (Springer, New York
  • Sindzingre, P., Misguich, G., Lhuillier, C., Bernu, B., Pierre, L., Waldtmann, Ch., Everts, H.-U., (2000) Phys. Rev. Lett., 84, p. 2953. , PRLTAO 0031-9007 10.1103/PhysRevLett.84.2953
  • Lecheminant, P., Bernu, B., Lhuillier, C., Pierre, L., Sindzingre, P., (1997) Phys. Rev. B, 56, p. 2521. , PRBMDO 0163-1829 10.1103/PhysRevB.56.2521
  • Mila, F., (1998) Phys. Rev. Lett., 81, p. 2356. , PRLTAO 0031-9007 10.1103/PhysRevLett.81.2356
  • Rigol, M., Singh, R.R.P., (2007) Phys. Rev. Lett., 98, p. 207204. , PRLTAO 0031-9007 10.1103/PhysRevLett.98.207204
  • Misguich, G., Sindzingre, P., (2007) Eur. Phys. J. B, 59, p. 305. , EPJBFY 1434-6028 10.1140/epjb/e2007-00301-6
  • Chitra, R., Rozenberg, M.J., (2008) Phys. Rev. B, 77, p. 052407. , PRBMDO 0163-1829 10.1103/PhysRevB.77.052407
  • Olariu, A., Mendels, P., Bert, F., Duc, F., Trombe, J.C., De Vries, M.A., Harrison, A., (2008) Phys. Rev. Lett., 100, p. 087202. , PRLTAO 0031-9007 10.1103/PhysRevLett.100.087202
  • Dommange, S., Mambrini, M., Normand, B., Mila, F., (2003) Phys. Rev. B, 68, p. 224416. , PRBMDO 0163-1829 10.1103/PhysRevB.68.224416
  • Leung, P.W., Elser, V., (1993) Phys. Rev. B, 47, p. 5459. , PRBMDO 0163-1829 10.1103/PhysRevB.47.5459
  • Note that similar small clusters were studied in Refs.; Note that while in our model the shifts are positive (as given directly by the local magnetizations), the experimental shifts happen to be negative due to the physical hyperfine coupling constant; Although the gap value should be affected by finite-size effects, extrapolations from larger systems data still predict a finite gap. Therefore one may expect our results to be qualitatively valid

Citas:

---------- APA ----------
Rozenberg, M.J. & Chitra, R. (2008) . Disorder effects in the quantum kagome antiferromagnet ZnCu 3(OH)6Cl2. Physical Review B - Condensed Matter and Materials Physics, 78(13).
http://dx.doi.org/10.1103/PhysRevB.78.132406
---------- CHICAGO ----------
Rozenberg, M.J., Chitra, R. "Disorder effects in the quantum kagome antiferromagnet ZnCu 3(OH)6Cl2" . Physical Review B - Condensed Matter and Materials Physics 78, no. 13 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.132406
---------- MLA ----------
Rozenberg, M.J., Chitra, R. "Disorder effects in the quantum kagome antiferromagnet ZnCu 3(OH)6Cl2" . Physical Review B - Condensed Matter and Materials Physics, vol. 78, no. 13, 2008.
http://dx.doi.org/10.1103/PhysRevB.78.132406
---------- VANCOUVER ----------
Rozenberg, M.J., Chitra, R. Disorder effects in the quantum kagome antiferromagnet ZnCu 3(OH)6Cl2. Phys. Rev. B Condens. Matter Mater. Phys. 2008;78(13).
http://dx.doi.org/10.1103/PhysRevB.78.132406