Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We study the electronic state of the doped Mott-Hubbard insulator within the dynamical mean field theory. The evolution of the finite temperature spectral functions as a function of doping show large redistributions of spectral weight in both antiferromagnetic and paramagnetic phases. In particular, a metallic antiferromagnetic state is obtained with a low frequency Slater-splitted quasiparticle peak coexisting with Hubbard bands. In the high temperature paramagnetic metallic phase, upon reducing doping, the system has a crossover through a "bad metal" state characterized by an anomalous shift of the quasiparticle peak away from the Fermi energy. We find that the charge compressibility of the antiferromagnetic metal is dramatically enhanced upon approaching the second order Néel line. © 2006 The American Physical Society.

Registro:

Documento: Artículo
Título:Electronic state of a doped Mott-Hubbard insulator at finite temperatures studied using the dynamical mean-field theory
Autor:Camjayi, A.; Chitra, R.; Rozenberg, M.J.
Filiación:Departamento de Física, FCEN, Ciudad Universitaria Pabellón I, Buenos Aires 1428, Argentina
Laboratoire de Physique Theorique des Liquides, UMR 7600, Universite de Pierre et Marie Curie, Jussieu, Paris-75005, France
Laboratoire de Physique des Solides, CNRS-UMR8502, Universite de Paris-Sud, Orsay 91405, France
Año:2006
Volumen:73
Número:4
DOI: http://dx.doi.org/10.1103/PhysRevB.73.041103
Título revista:Physical Review B - Condensed Matter and Materials Physics
Título revista abreviado:Phys. Rev. B Condens. Matter Mater. Phys.
ISSN:10980121
CODEN:PRBMD
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10980121_v73_n4_p_Camjayi

Referencias:

  • Mott, N.F., (1990) Metal Insulator Transitions, , Taylor and Francis, London
  • Imada, M., Fujimori, A., Tokura, Y., (1998) Rev. Mod. Phys., 70, p. 1039. , RMPHAT 0034-6861 10.1103/RevModPhys.70.1039
  • Georges, A., Kotliar, G., Krauth, W., Rozenberg, M.J., (1996) Rev. Mod. Phys., 68, p. 13. , RMPHAT 0034-6861 10.1103/RevModPhys.68.13
  • Kotliar, G., Vollhardt, D., (2004) Phys. Today, 57 (3), p. 53. , PHTOAD 0031-9228
  • Rozenberg, M.J., Chitra, R., Kotliar, G., (1999) Phys. Rev. Lett., 83, p. 3498. , PRLTAO 0031-9007 10.1103/PhysRevLett.83.3498
  • Kotliar, G., Lange, E., Rozenberg, M.J., (2000) Phys. Rev. Lett., 84, p. 5180. , PRLTAO 0031-9007 10.1103/PhysRevLett.84.5180
  • Limelette, P., (2003) Science, 302, p. 89. , SCIEAS 0036-8075 10.1126/science.1088386
  • Lee, P.A., Nagaosa, N., Wen, X.-G., ; Ando, Y., Laurov, A.N., Komiya, S., Segawa, K., Sun, X.F., (2001) Phys. Rev. Lett., 87, p. 017001. , PRLTAO 0031-9007 10.1103/PhysRevLett.87.017001
  • Shen, K.M., (2004) Phys. Rev. Lett., 93, p. 267002. , PRLTAO 0031-9007 10.1103/PhysRevLett.93.267002
  • Freericks, J.K., Jarrell, M., (1995) Phys. Rev. Lett., 74, p. 186. , PRLTAO 0031-9007 10.1103/PhysRevLett.74.186
  • Zitzler, R., Pruschke, T., Bulla, R., (2002) Eur. Phys. J. B, 27, p. 473. , EPJBFY 1434-6028 10.1140/epjb/e2002-00180-3
  • Hirsch, J.E., Fye, R.M., (1986) Phys. Rev. Lett., 56, p. 2521. , PRLTAO 0031-9007 10.1103/PhysRevLett.56.2521
  • Jarrell, M., Gubernatis, J.E., (1996) Phys. Rep., 269, p. 133. , PRPLCM 0370-1573 10.1016/0370-1573(95)00074-7
  • Rozenberg, M.J., Kotliar, G., Zhang, X.Y., (1994) Phys. Rev. B, 49, p. 10181. , PRBMDO 0163-1829 10.1103/PhysRevB.49.10181
  • Brinkman, W.F., Rice, T.M., (1970) Phys. Rev. B, 2, p. 4302. , PRBMDO 0163-1829 10.1103/PhysRevB.2.4302
  • Kajueter, H., Kotliar, G., Moeller, G., (1996) Phys. Rev. B, 53, p. 16214. , PRBMDO 0163-1829 10.1103/PhysRevB.53.16214
  • Pruschke, T., Cox, D.L., Jarrell, M., (1993) Phys. Rev. B, 47, p. 3553. , PRBMDO 0163-1829 10.1103/PhysRevB.47.3553
  • Fournier, D., Poirier, M., Castonguay, M., Truong, K., (2003) Phys. Rev. Lett., 90, p. 127002. , PRLTAO 0031-9007 10.1103/PhysRevLett.90.127002
  • Hassan, S.R., Georges, A., Krishnamurthy, H.R., (2005) Phys. Rev. Lett., 94, p. 036402. , PRLTAO 0031-9007 10.1103/PhysRevLett.94.036402

Citas:

---------- APA ----------
Camjayi, A., Chitra, R. & Rozenberg, M.J. (2006) . Electronic state of a doped Mott-Hubbard insulator at finite temperatures studied using the dynamical mean-field theory. Physical Review B - Condensed Matter and Materials Physics, 73(4).
http://dx.doi.org/10.1103/PhysRevB.73.041103
---------- CHICAGO ----------
Camjayi, A., Chitra, R., Rozenberg, M.J. "Electronic state of a doped Mott-Hubbard insulator at finite temperatures studied using the dynamical mean-field theory" . Physical Review B - Condensed Matter and Materials Physics 73, no. 4 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.041103
---------- MLA ----------
Camjayi, A., Chitra, R., Rozenberg, M.J. "Electronic state of a doped Mott-Hubbard insulator at finite temperatures studied using the dynamical mean-field theory" . Physical Review B - Condensed Matter and Materials Physics, vol. 73, no. 4, 2006.
http://dx.doi.org/10.1103/PhysRevB.73.041103
---------- VANCOUVER ----------
Camjayi, A., Chitra, R., Rozenberg, M.J. Electronic state of a doped Mott-Hubbard insulator at finite temperatures studied using the dynamical mean-field theory. Phys. Rev. B Condens. Matter Mater. Phys. 2006;73(4).
http://dx.doi.org/10.1103/PhysRevB.73.041103