Artículo

Repetto, M.V.; Winters, M.J.; Bush, A.; Reiter, W.; Hollenstein, D.M.; Ammerer, G.; Pryciak, P.M.; Colman-Lerner, A. "CDK and MAPK Synergistically Regulate Signaling Dynamics via a Shared Multi-site Phosphorylation Region on the Scaffold Protein Ste5" (2018) Molecular Cell. 69(6):938-952.e6
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We report an unanticipated system of joint regulation by cyclin-dependent kinase (CDK) and mitogen-activated protein kinase (MAPK), involving collaborative multi-site phosphorylation of a single substrate. In budding yeast, the protein Ste5 controls signaling through a G1 arrest pathway. Upon cell-cycle entry, CDK inhibits Ste5 via multiple phosphorylation sites, disrupting its membrane association. Using quantitative time-lapse microscopy, we examined Ste5 membrane recruitment dynamics at different cell-cycle stages. Surprisingly, in S phase, where Ste5 recruitment should be blocked, we observed an initial recruitment followed by a steep drop-off. This delayed inhibition revealed a requirement for both CDK activity and negative feedback from the pathway MAPK Fus3. Mutagenesis, mass spectrometry, and electrophoretic analyses suggest that the CDK and MAPK modify shared sites, which are most extensively phosphorylated when both kinases are active and able to bind their docking sites on Ste5. Such collaborative phosphorylation can broaden regulatory inputs and diversify output dynamics of signaling pathways. CDKs and MAPKs phosphorylate similar sites yet generally have distinct functions and substrates. Repetto et al. uncover a case where these kinases collaborate to regulate a substrate in a signal transduction pathway by phosphorylating a shared set of sites. © 2018 Elsevier Inc.

Registro:

Documento: Artículo
Título:CDK and MAPK Synergistically Regulate Signaling Dynamics via a Shared Multi-site Phosphorylation Region on the Scaffold Protein Ste5
Autor:Repetto, M.V.; Winters, M.J.; Bush, A.; Reiter, W.; Hollenstein, D.M.; Ammerer, G.; Pryciak, P.M.; Colman-Lerner, A.
Filiación:Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Buenos Aires, C1428EGA, Argentina
CONICET-UBA, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires C1428EHA, Argentina
Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, United States
Department for Biochemistry, Max F. Perutz Laboratories, University of Vienna, Vienna, 1030, Austria
Palabras clave:Cdc28; Cks1; Cln2; cyclin; G protein; mating; pheromone; signal transduction; start; Ste4; cyclin dependent kinase; mitogen activated protein kinase; scaffold protein; ste5 protein; unclassified drug; CLN1 protein, S cerevisiae; CLN2 protein, S cerevisiae; cyclin dependent kinase; cycline; FUS3 protein, S cerevisiae; mitogen activated protein kinase; protein binding; Saccharomyces cerevisiae protein; signal transducing adaptor protein; STE5 protein, S cerevisiae; Article; cell cycle S phase; G1 phase cell cycle checkpoint; intracellular signaling; MAPK signaling; mass spectrometry; molecular docking; mutagenesis; negative feedback; protein binding; protein electrophoresis; protein phosphorylation; regulatory mechanism; time-lapse microscopy; binding site; cell cycle checkpoint; cell membrane; enzyme specificity; enzymology; genetics; growth, development and aging; kinetics; metabolism; phosphorylation; Saccharomyces cerevisiae; signal transduction; Adaptor Proteins, Signal Transducing; Binding Sites; Cell Cycle Checkpoints; Cell Membrane; Cyclin-Dependent Kinases; Cyclins; Kinetics; Mitogen-Activated Protein Kinases; Phosphorylation; Protein Binding; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins; Signal Transduction; Substrate Specificity
Año:2018
Volumen:69
Número:6
Página de inicio:938
Página de fin:952.e6
DOI: http://dx.doi.org/10.1016/j.molcel.2018.02.018
Título revista:Molecular Cell
Título revista abreviado:Mol. Cell
ISSN:10972765
CODEN:MOCEF
CAS:cyclin dependent kinase, 150428-23-2; mitogen activated protein kinase, 142243-02-5; Adaptor Proteins, Signal Transducing; CLN1 protein, S cerevisiae; CLN2 protein, S cerevisiae; Cyclin-Dependent Kinases; Cyclins; FUS3 protein, S cerevisiae; Mitogen-Activated Protein Kinases; Saccharomyces cerevisiae Proteins; STE5 protein, S cerevisiae
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10972765_v69_n6_p938_Repetto

Referencias:

  • Alon, U., An Introduction to Systems Biology: Design Principles of Biological Circuits (Chapman & Hall/CRC Mathematical & Computational Biology) (2006), Chapman & Hall; Alvaro, C.G., Thorner, J., Heterotrimeric G protein-coupled receptor signaling in yeast mating pheromone response (2016) J. Biol. Chem., 291, pp. 7788-7795
  • Bardwell, L., A walk-through of the yeast mating pheromone response pathway (2005) Peptides, 26, pp. 339-350
  • Bhaduri, S., Pryciak, P.M., Cyclin-specific docking motifs promote phosphorylation of yeast signaling proteins by G1/S Cdk complexes (2011) Curr. Biol., 21, pp. 1615-1623
  • Bhattacharyya, R.P., Reményi, A., Good, M.C., Bashor, C.J., Falick, A.M., Lim, W.A., The Ste5 scaffold allosterically modulates signaling output of the yeast mating pathway (2006) Science, 311, pp. 822-826
  • Bishop, A.C., Ubersax, J.A., Petsch, D.T., Matheos, D.P., Gray, N.S., Blethrow, J., Shimizu, E., Rose, M.D., A chemical switch for inhibitor-sensitive alleles of any protein kinase (2000) Nature, 407, pp. 395-401
  • Bush, A., Colman-Lerner, A., Quantitative measurement of protein relocalization in live cells (2013) Biophys. J., 104, pp. 727-736
  • Bush, A., Chernomoretz, A., Yu, R., Gordon, A., Colman-Lerner, A., Using Cell-ID 1.4 with R for microscope-based cytometry (2012) Curr. Protoc. Mol. Biol., Chapter 14. , Unit 14.18
  • Chambers, M.C., Maclean, B., Burke, R., Amodei, D., Ruderman, D.L., Neumann, S., Gatto, L., Egertson, J., A cross-platform toolkit for mass spectrometry and proteomics (2012) Nat. Biotechnol., 30, pp. 918-920
  • Colman-Lerner, A., Gordon, A., Serra, E., Chin, T., Resnekov, O., Endy, D., Pesce, C.G., Brent, R., Regulated cell-to-cell variation in a cell-fate decision system (2005) Nature, 437, pp. 699-706
  • Conlon, P., Gelin-Licht, R., Ganesan, A., Zhang, J., Levchenko, A., Single-cell dynamics and variability of MAPK activity in a yeast differentiation pathway (2016) Proc. Natl. Acad. Sci. USA, 113, pp. E5896-E5905
  • Doncic, A., Falleur-Fettig, M., Skotheim, J.M., Distinct interactions select and maintain a specific cell fate (2011) Mol. Cell, 43, pp. 528-539
  • Doncic, A., Atay, O., Valk, E., Grande, A., Bush, A., Vasen, G., Colman-Lerner, A., Skotheim, J.M., Compartmentalization of a bistable switch enables memory to cross a feedback-driven transition (2015) Cell, 160, pp. 1182-1195
  • Durandau, E., Aymoz, D., Pelet, S., Dynamic single cell measurements of kinase activity by synthetic kinase activity relocation sensors (2015) BMC Biol., 13, p. 55
  • Eng, J.K., Jahan, T.A., Hoopmann, M.R., Comet: an open-source MS/MS sequence database search tool (2013) Proteomics, 13, pp. 22-24
  • Feng, Y., Song, L.Y., Kincaid, E., Mahanty, S.K., Elion, E.A., Functional binding between Gbeta and the LIM domain of Ste5 is required to activate the MEKK Ste11 (1998) Curr. Biol., 8, pp. 267-278
  • Godfrey, M., Touati, S.A., Kataria, M., Jones, A., Snijders, A.P., Uhlmann, F., PP2ACdc55 phosphatase imposes ordered cell-cycle phosphorylation by opposing threonine phosphorylation (2017) Mol. Cell, 65, pp. 393-402.e3
  • Gordon, A., Colman-Lerner, A., Chin, T.E., Benjamin, K.R., Yu, R.C., Brent, R., Single-cell quantification of molecules and rates using open-source microscope-based cytometry (2007) Nat. Methods, 4, pp. 175-181
  • Hartwell, L.H., Culotti, J., Pringle, J.R., Reid, B.J., Genetic control of the cell division cycle in yeast (1974) Science, 183, pp. 46-51
  • Hollenstein, D.M., Hollenstein, J.J., (2017), hollenstein/maspy 1.1.3. (version 1.1.3.). Zenodo Published online March 2 10.5281/zenodo.345118. 2017; Inouye, C., Dhillon, N., Thorner, J., Ste5 RING-H2 domain: role in Ste4-promoted oligomerization for yeast pheromone signaling (1997) Science, 278, pp. 103-106
  • Käll, L., Canterbury, J.D., Weston, J., Noble, W.S., MacCoss, M.J., Semi-supervised learning for peptide identification from shotgun proteomics datasets (2007) Nat. Methods, 4, pp. 923-925
  • Kõivomägi, M., Valk, E., Venta, R., Iofik, A., Lepiku, M., Balog, E.R., Rubin, S.M., Loog, M., Cascades of multisite phosphorylation control Sic1 destruction at the onset of S phase (2011) Nature, 480, pp. 128-131
  • Kõivomägi, M., Ord, M., Iofik, A., Valk, E., Venta, R., Faustova, I., Kivi, R., Loog, M., Multisite phosphorylation networks as signal processors for Cdk1 (2013) Nat. Struct. Mol. Biol., 20, pp. 1415-1424
  • Langella, O., Valot, B., Balliau, T., Blein-Nicolas, M., Bonhomme, L., Zivy, M., X!TandemPipeline: a tool to manage sequence redundancy for protein inference and phosphosite identification (2017) J. Proteome Res., 16, pp. 494-503
  • Longtine, M.S., McKenzie, A., 3rd, Demarini, D.J., Shah, N.G., Wach, A., Brachat, A., Philippsen, P., Pringle, J.R., Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae (1998) Yeast, 14, pp. 953-961
  • Lyutvinskiy, Y., Yang, H., Rutishauser, D., Zubarev, R.A., In silico instrumental response correction improves precision of label-free proteomics and accuracy of proteomics-based predictive models (2013) Mol. Cell. Proteomics, 12, pp. 2324-2331
  • Maeder, C.I., Hink, M.A., Kinkhabwala, A., Mayr, R., Bastiaens, P.I., Knop, M., Spatial regulation of Fus3 MAP kinase activity through a reaction-diffusion mechanism in yeast pheromone signalling (2007) Nat. Cell Biol., 9, pp. 1319-1326
  • Malleshaiah, M.K., Shahrezaei, V., Swain, P.S., Michnick, S.W., The scaffold protein Ste5 directly controls a switch-like mating decision in yeast (2010) Nature, 465, pp. 101-105
  • McGrath, D.A., Balog, E.R., Kõivomägi, M., Lucena, R., Mai, M.V., Hirschi, A., Kellogg, D.R., Rubin, S.M., Cks confers specificity to phosphorylation-dependent CDK signaling pathways (2013) Nat. Struct. Mol. Biol., 20, pp. 1407-1414
  • Oehlen, L.J., Cross, F.R., G1 cyclins CLN1 and CLN2 repress the mating factor response pathway at Start in the yeast cell cycle (1994) Genes Dev., 8, pp. 1058-1070
  • Pinna, L.A., Ruzzene, M., How do protein kinases recognize their substrates? (1996) Biochim. Biophys. Acta, 1314, pp. 191-225
  • Reiter, W., Anrather, D., Dohnal, I., Pichler, P., Veis, J., Grøtli, M., Posas, F., Ammerer, G., Validation of regulated protein phosphorylation events in yeast by quantitative mass spectrometry analysis of purified proteins (2012) Proteomics, 12, pp. 3030-3043
  • Romanov, N., Hollenstein, D.M., Janschitz, M., Ammerer, G., Anrather, D., Reiter, W., Identifying protein kinase-specific effectors of the osmostress response in yeast (2017) Sci. Signal., 10, p. eaag2435
  • Rothstein, R., Targeting, disruption, replacement, and allele rescue: integrative DNA transformation in yeast (1991) Methods Enzymol., 194, pp. 281-301
  • Sherman, F., Getting started with yeast (2002) Methods Enzymol., 350, pp. 3-41
  • Strickfaden, S.C., Pryciak, P.M., Distinct roles for two Galpha-Gbeta interfaces in cell polarity control by a yeast heterotrimeric G protein (2008) Mol. Biol. Cell, 19, pp. 181-197
  • Strickfaden, S.C., Winters, M.J., Ben-Ari, G., Lamson, R.E., Tyers, M., Pryciak, P.M., A mechanism for cell-cycle regulation of MAP kinase signaling in a yeast differentiation pathway (2007) Cell, 128, pp. 519-531
  • Suzuki, K., Sako, K., Akiyama, K., Isoda, M., Senoo, C., Nakajo, N., Sagata, N., Identification of non-Ser/Thr-Pro consensus motifs for Cdk1 and their roles in mitotic regulation of C2H2 zinc finger proteins and Ect2 (2015) Sci. Rep., 5, p. 7929
  • Taus, T., Köcher, T., Pichler, P., Paschke, C., Schmidt, A., Henrich, C., Mechtler, K., Universal and confident phosphorylation site localization using phosphoRS (2011) J. Proteome Res., 10, pp. 5354-5362
  • Teleman, J., Chawade, A., Sandin, M., Levander, F., Malmström, J., Dinosaur: a refined open-source peptide MS feature detector (2016) J. Proteome Res., 15, pp. 2143-2151
  • Tyanova, S., Temu, T., Carlson, A., Sinitcyn, P., Mann, M., Cox, J., Visualization of LC-MS/MS proteomics data in MaxQuant (2015) Proteomics, 15, pp. 1453-1456
  • Vizcaíno, J.A., Csordas, A., del-Toro, N., Dianes, J.A., Griss, J., Lavidas, I., Mayer, G., Ternent, T., 2016 update of the PRIDE database and its related tools (2016) Nucleic Acids Res., 44 (D1), pp. D447-D456
  • Winters, M.J., Lamson, R.E., Nakanishi, H., Neiman, A.M., Pryciak, P.M., A membrane binding domain in the ste5 scaffold synergizes with gbetagamma binding to control localization and signaling in pheromone response (2005) Mol. Cell, 20, pp. 21-32
  • Yang, X., Lau, K.Y., Sevim, V., Tang, C., Design principles of the yeast G1/S switch (2013) PLoS Biol., 11, p. e1001673
  • Yu, R.C., Pesce, C.G., Colman-Lerner, A., Lok, L., Pincus, D., Serra, E., Holl, M., Brent, R., Negative feedback that improves information transmission in yeast signalling (2008) Nature, 456, pp. 755-761

Citas:

---------- APA ----------
Repetto, M.V., Winters, M.J., Bush, A., Reiter, W., Hollenstein, D.M., Ammerer, G., Pryciak, P.M.,..., Colman-Lerner, A. (2018) . CDK and MAPK Synergistically Regulate Signaling Dynamics via a Shared Multi-site Phosphorylation Region on the Scaffold Protein Ste5. Molecular Cell, 69(6), 938-952.e6.
http://dx.doi.org/10.1016/j.molcel.2018.02.018
---------- CHICAGO ----------
Repetto, M.V., Winters, M.J., Bush, A., Reiter, W., Hollenstein, D.M., Ammerer, G., et al. "CDK and MAPK Synergistically Regulate Signaling Dynamics via a Shared Multi-site Phosphorylation Region on the Scaffold Protein Ste5" . Molecular Cell 69, no. 6 (2018) : 938-952.e6.
http://dx.doi.org/10.1016/j.molcel.2018.02.018
---------- MLA ----------
Repetto, M.V., Winters, M.J., Bush, A., Reiter, W., Hollenstein, D.M., Ammerer, G., et al. "CDK and MAPK Synergistically Regulate Signaling Dynamics via a Shared Multi-site Phosphorylation Region on the Scaffold Protein Ste5" . Molecular Cell, vol. 69, no. 6, 2018, pp. 938-952.e6.
http://dx.doi.org/10.1016/j.molcel.2018.02.018
---------- VANCOUVER ----------
Repetto, M.V., Winters, M.J., Bush, A., Reiter, W., Hollenstein, D.M., Ammerer, G., et al. CDK and MAPK Synergistically Regulate Signaling Dynamics via a Shared Multi-site Phosphorylation Region on the Scaffold Protein Ste5. Mol. Cell. 2018;69(6):938-952.e6.
http://dx.doi.org/10.1016/j.molcel.2018.02.018