Artículo

Canepa, G.E.; Carrillo, C.; Miranda, M.R.; Sayé, M.; Pereira, C.A. "Arginine kinase in Phytomonas, a trypanosomatid parasite of plants" (2011) Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology. 160(1):40-43
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Phytomonas are trypanosomatid plant parasites closely related to parasites that cause several human diseases. Little is known about the biology of these organisms including aspects of their metabolism. Arginine kinase (E.C. 2.7.3.3) is a phosphotransferase which catalyzes the interconversion between the phosphagen phosphoarginine and ATP. This enzyme is present in some invertebrates and is a homolog of another widely distributed phosphosphagen kinase, creatine kinase. In this work, a single canonical arginine kinase isoform was detected in Phytomonas Jma by enzymatic activity assays, PCR, and Western Blot. This arginine kinase is very similar to the canonical isoforms found in T. cruzi and T. brucei, presenting about 70% of amino acid sequence identity and a very similar molecular weight (40. kDa). The Phytomonas phosphagen system seems to be very similar to T. cruzi, which has only one isoform, or T. brucei (three isoforms); establishing a difference with other trypanosomatids, such as Leishmania, which completely lacks phosphagen kinases, probably by the presence of the arginine-consuming enzyme, arginase. Finally, phylogenetic analysis suggests that Kinetoplastids' arginine kinase was acquired, during evolution, from the arthropod vectors by horizontal gene transfer. © 2011 Elsevier Inc.

Registro:

Documento: Artículo
Título:Arginine kinase in Phytomonas, a trypanosomatid parasite of plants
Autor:Canepa, G.E.; Carrillo, C.; Miranda, M.R.; Sayé, M.; Pereira, C.A.
Filiación:Laboratorio de Biología Molecular de Trypanosoma cruzi (LBMTC), Instituto de Investigaciones Médicas Alfredo Lanari, Universidad de Buenos Aires and CONICET, Buenos Aires, Argentina
Fundación Instituto Leloir, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and CONICET, Buenos Aires, Argentina
Palabras clave:Jatropha macrantha; Leishmania; Phosphagen; Phosphagen kinases; Trypanosoma; amino acid; arginase; arginine kinase; amino acid sequence; article; controlled study; enzyme activity; horizontal gene transfer; Leishmania; molecular weight; nonhuman; parasite vector; phylogeny; Phytomonas; priority journal; reverse transcription polymerase chain reaction; Trypanosoma brucei; Trypanosoma cruzi; Western blotting; Amino Acid Sequence; Animals; Arginine Kinase; Biological Evolution; Humans; Isoenzymes; Molecular Sequence Data; Phylogeny; Plants; Sequence Alignment; Trypanosomatina; Arthropoda; Invertebrata; Jatropha; Kinetoplastida; Phytomonas; Trypanosoma; Trypanosoma brucei; Trypanosoma cruzi; Trypanosomatidae
Año:2011
Volumen:160
Número:1
Página de inicio:40
Página de fin:43
DOI: http://dx.doi.org/10.1016/j.cbpb.2011.05.006
Título revista:Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology
Título revista abreviado:Comp. Biochem. Physiol. B Biochem. Mol. Biol.
ISSN:10964959
CODEN:CBPBB
CAS:amino acid, 65072-01-7; arginase, 9000-96-8; arginine kinase, 9026-70-4; Arginine Kinase, 2.7.3.3; Isoenzymes
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10964959_v160_n1_p40_Canepa

Referencias:

  • Andrews, L.D., Graham, J., Snider, M.J., Fraga, D., Characterization of a novel bacterial arginine kinase from Desulfotalea psychrophila (2008) Comp. Biochem. Physiol. B Biochem. Mol. Biol., 150 (3), pp. 312-319
  • Camargo, E.P., Growth and differentiation in Trypanosoma cruzi. Origin of metacyclic trypanosomes in liquid media (1964) Rev. Inst. Med. Trop. Sao Paulo, 6, pp. 93-100
  • Canepa, G.E., Carrillo, C., Armesto, A.R., Bouvier, L.A., Miranda, M.R., Pereira, C.A., Phytomonas: transport of amino acids, hexoses and polyamines (2007) Exp. Parasitol., 117 (1), pp. 106-110
  • Canonaco, F., Schlattner, U., Pruett, P.S., Wallimann, T., Sauer, U., Functional expression of phosphagen kinase systems confers resistance to transient stresses in Saccharomyces cerevisiae by buffering the ATP pool (2002) J. Biol. Chem., 277 (35), pp. 31303-31309
  • Canonaco, F., Schlattner, U., Wallimann, T., Sauer, U., Functional expression of arginine kinase improves recovery from pH stress of Escherichia coli (2003) Biotechnol. Lett., 25 (13), pp. 1013-1017
  • Dollet, M., Phloem-restricted trypanosomatids form a clearly characterised monophyletic group among trypanosomatids isolated from plants (2001) Int. J. Parasitol., 31, pp. 459-467
  • Ellington, W.R., Evolution and physiological roles of phosphagen systems (2001) Annu. Rev. Physiol., 63, pp. 289-325
  • Fernandes, A.P., Nelson, K., Beverley, S.M., Evolution of nuclear ribosomal RNAs in kinetoplastid protozoa: perspectives on the age and origins of parasitism (1993) Proc. Natl. Acad. Sci. U.S.A., 90 (24), pp. 11608-11612
  • Hird, F.J., The importance of arginine in evolution (1986) Comp. Biochem. Physiol. B, 85 (2), pp. 285-288
  • Jankevicius, J.V., Jankevicius, S.I., Campaner, M., Conchon, I., Maeda, L.A., Teixeira, M.M.G., Freymuller, E., Camargo, E.P., Life cycle and culturing of Phytomonas serpens (Gibbs), a trypanosomatid parasite of tomatoes (1989) J. Protozool., 36, pp. 265-271
  • Miranda, M.R., Canepa, G.E., Bouvier, L.A., Pereira, C.A., Trypanosoma cruzi: oxidative stress induces arginine kinase expression (2006) Exp. Parasitol., 114 (4), pp. 341-344
  • Pereira, C.A., Alonso, G.D., Paveto, M.C., Flawia, M.M., Torres, H.N., L-arginine uptake and l-phosphoarginine synthesis in Trypanosoma cruzi (1999) J. Eukaryot. Microbiol., 46, pp. 566-570
  • Pereira, C.A., Alonso, G.D., Paveto, M.C., Iribarren, A., Cabanas, M.L., Torres, H.N., Flawiá, M.M., Trypanosoma cruzi arginine kinase characterization and cloning. A novel energetic pathway in protozoan parasites (2000) J. Biol. Chem., 275 (2), pp. 1495-1501
  • Pereira, C.A., Alonso, G.D., Torres, H.N., Flawia, M.M., Arginine kinase: a common feature for management of energy reserves in African and American flagellated trypanosomatids (2002) J. Eukaryot. Microbiol., 49, pp. 82-85
  • Pereira, C.A., Alonso, G.D., Ivaldi, S., Bouvier, L.A., Torres, H.N., Flawiá, M.M., Screening of substrate analogs as potential enzyme inhibitors for the arginine kinase of Trypanosoma cruzi (2003) J. Eukaryot. Microbiol., 50 (2), pp. 132-134
  • Pereira, A., Alonso, G.D., Ivaldi, S., Silber, A.M., Alves, M.J., Torres, H.N., Flawiá, M.M., Arginine kinase overexpression improves Trypanosoma cruzi survival capability (2003) FEBS Lett., 554 (1-2), pp. 201-205
  • Sanchez-Moreno, M., Lasztity, D., Coppens, I., Opperdoes, F.R., Characterization of carbohydrate metabolism and demonstration of glycosomes in a Phytomonas sp. isolated from Euphorbia characias (1992) Mol. Biochem. Parasitol., 54, pp. 185-199
  • Serrano, M.G., Nunes, L.R., Campaner, M., Buck, G.A., Camargo, E.P., Teixeira, M.M., Trypanosomatidae: Phytomonas detection in plants and phytophagous insects by PCR amplification of a genus-specific sequence of the spliced leader gene (1999) Exp. Parasitol., 91, pp. 268-279
  • Suzuki, T., Furukohri, T., Evolution of phosphagen kinase: primary structure of glycocyamine kinase and arginine kinase from invertebrates (1994) J. Mol. Biol., 237, pp. 353-357
  • Tamura, K., Dudley, J., Nei, M., Kumar, S., MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0 (2007) Mol. Biol. Evol., 24, pp. 1596-1599
  • Teixeira, M.M., Takata, C.S., Conchon, I., Campaner, M., Camargo, E.P., Ribosomal and kDNA markers distinguish two subgroups of Herpetomonas among old species and new trypanosomatids isolated from flies (1997) J. Parasitol., 83 (1), pp. 58-65
  • Uda, K., Fujimoto, N., Akiyama, Y., Mizuta, K., Tanaka, K., Ellington, W.R., Suzuki, T., Evolution of the arginine kinase gene family (2006) Comp. Biochem. Physiol. Part D Genomics Proteomics, 1 (2), pp. 209-218
  • Zhou, G., Somasundaram, T., Blanc, E., Parthasarathy, G., Ellington, W.R., Chapman, M.S., Transition state structure of arginine kinase: implications for catalysis of bimolecular reactions (1998) Proc. Natl. Acad. Sci. U.S.A., 95, pp. 8449-8454

Citas:

---------- APA ----------
Canepa, G.E., Carrillo, C., Miranda, M.R., Sayé, M. & Pereira, C.A. (2011) . Arginine kinase in Phytomonas, a trypanosomatid parasite of plants. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 160(1), 40-43.
http://dx.doi.org/10.1016/j.cbpb.2011.05.006
---------- CHICAGO ----------
Canepa, G.E., Carrillo, C., Miranda, M.R., Sayé, M., Pereira, C.A. "Arginine kinase in Phytomonas, a trypanosomatid parasite of plants" . Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology 160, no. 1 (2011) : 40-43.
http://dx.doi.org/10.1016/j.cbpb.2011.05.006
---------- MLA ----------
Canepa, G.E., Carrillo, C., Miranda, M.R., Sayé, M., Pereira, C.A. "Arginine kinase in Phytomonas, a trypanosomatid parasite of plants" . Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, vol. 160, no. 1, 2011, pp. 40-43.
http://dx.doi.org/10.1016/j.cbpb.2011.05.006
---------- VANCOUVER ----------
Canepa, G.E., Carrillo, C., Miranda, M.R., Sayé, M., Pereira, C.A. Arginine kinase in Phytomonas, a trypanosomatid parasite of plants. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2011;160(1):40-43.
http://dx.doi.org/10.1016/j.cbpb.2011.05.006