Artículo

Lattuca, M.E.; Malanga, G.; Hurtado, C.A.; Pérez, A.F.; Calvo, J.; Puntarulo, S. "Main features of the oxidative metabolism in gills and liver of Odontesthes nigricans Richardson (Pisces, Atherinopsidae)" (2009) Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology. 154(4):406-411
La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The aim of this work was to study comparatively the oxidative metabolism in gills and liver of a silverside, Odontesthes nigricans, in their natural environment, the Beagle Channel. Oxidative damage to lipids was evaluated by assessing TBARS and lipid radical content, in gills and liver. Gills showed a significantly higher degree of damage than liver. The content of α-tocopherol, β-carotene and catalase activity showed significantly higher values in the liver than in the gills. The ascorbyl radical (A•) content showed no significant differences between gills and liver. The ascorbate (AH-) content was 12 ± 2 and 159 ± 28 nmol/mg FW in gills and liver, respectively. Oxidative metabolism at the hydrophilic level was assessed as the ratio A•/AH-. The ratio A•/AH- was significantly different between organs, (6 ± 2)10- 5 and (5 ± 2)10- 6, for the gills and the liver, respectively. Both, lipid radical content/α-tocopherol content and lipid radical content/β-carotene content ratios were significantly higher in gills as compared to the values recorded for the liver, suggesting an increased situation of oxidative stress condition in the lipid phase of the gills. Taken as a whole, the O. nigricans liver exhibited a better control of oxidative damage than the gills, allowing minimization of intracellular damage when exposed to environmental stressing conditions. © 2009 Elsevier Inc. All rights reserved.

Registro:

Documento: Artículo
Título:Main features of the oxidative metabolism in gills and liver of Odontesthes nigricans Richardson (Pisces, Atherinopsidae)
Autor:Lattuca, M.E.; Malanga, G.; Hurtado, C.A.; Pérez, A.F.; Calvo, J.; Puntarulo, S.
Filiación:Laboratorio de Ecofisiología, Centro Austral de Investigaciones Científicas (CADIC-CONICET), Bernardo Houssay 200, V9410BFD Ushuaia, Tierra del Fuego, Argentina
Universidad de los Andes, Cali, Colombia
Laboratorio de Ecología de Organismos Bentónicos Marinos, Departamento de Ecología, Genética y Evolución, FCEN, Buenos Aires, Argentina
Physical Chemistry-PRALIB, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
Palabras clave:Antioxidants; Beagle Channel; Lipid peroxidation; Odontesthes nigricans; Oxidative metabolism; alpha tocopherol; ascorbic acid; beta carotene; catalase; lipid; radical; thiobarbituric acid reactive substance; aerobic metabolism; animal experiment; animal model; article; cell damage; controlled study; environmental exposure; enzyme activity; fish disease; gill; lipid oxidation; liver metabolism; nonhuman; oxidative stress; priority journal; Animals; Antioxidants; Electron Spin Resonance Spectroscopy; Female; Fishes; Free Radicals; Gills; Intracellular Space; Lipid Metabolism; Lipid Peroxidation; Liver; Male; Oxidative Stress; Reactive Oxygen Species; Water; Argentina elongata; Atherinopsidae; Odontesthes nigricans; Pisces
Año:2009
Volumen:154
Número:4
Página de inicio:406
Página de fin:411
DOI: http://dx.doi.org/10.1016/j.cbpb.2009.08.004
Título revista:Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology
Título revista abreviado:Comp. Biochem. Physiol. B Biochem. Mol. Biol.
ISSN:10964959
CODEN:CBPBB
CAS:alpha tocopherol, 1406-18-4, 1406-70-8, 52225-20-4, 58-95-7, 59-02-9; ascorbic acid, 134-03-2, 15421-15-5, 50-81-7; beta carotene, 7235-40-7; catalase, 9001-05-2; lipid, 66455-18-3; Antioxidants; Free Radicals; Reactive Oxygen Species; Water, 7732-18-5
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10964959_v154_n4_p406_Lattuca

Referencias:

  • Abele, D., Puntarulo, S., Formation of reactive species and induction of antioxidant defence systems in polar and temperate marine invertebrates and fish (2004) Comp. Biochem. Physiol., 138, pp. 405-415
  • Abele, D., Burlando, B., Viarengo, A., Portner, H.O., Exposure to elevated temperatures and oxidative stress and antioxidante response in the Antarctic intertidal limpet Nacella concinna (1998) Comp. Biochem. Physiol. B, 120, pp. 425-435
  • Abele, D., Philipp, E., González, P.M., Puntarulo, S., Marine invertebrate mitochondria and oxidative stress (2007) Front. Biosci., 12, pp. 933-946. , http://www.bioscience.org, http://www.bioscience.org
  • Aebi, H., Catalase in vitro (1984) Methods Enzymol., 105, pp. 121-126
  • Ahmad, I., Maria, V.L., Oliveira, M., Serafim, A., Bebianno, M.J., Pacheco, M., Santos, M.A., DNA damage and lipid peroxidation vs. protection responses in the gill of Dicentrarchus labrax L. from a contaminated coastal lagoon (Ria de Aveiro, Portugal) (2008) Sci. Total Environ., 406, pp. 298-307
  • Aksnes, A., Njaa, L.R., Cabalase, glutathione peroxidase, and superoxide dismutase in different fish species (1981) Comp. Biochem. Physiol. B, 69, pp. 893-896
  • Almroth, B.C., Sturve, J., Berglund, A., Förlin, L., Oxidative damage in eelpout (Zoarces viviparous), measured as protein carbonyls and TBARS, as biomarkers (2005) Aquat. Toxicol., 73, pp. 171-180
  • Ansaldo, M., Luquet, C., Evelson, P.A., Polo, J.M., Llesuy, S., Antioxidant levels from different Antarctic fish caught around South Georgia Island and Shag Rocks (2000) Polar Biol., 23, pp. 160-165
  • Bagnyukova, T.V., Lushchak, O.V., Storey, K.B., Lushchak, V.I., Oxidative stress and antioxidant defense by goldfish tissues to acute change of temperature from 3 to 23 °C (2007) J. Therm. Biol., 32, pp. 227-234
  • Clermont, G., Lecour, S., Lahet, J.-J., Siohan, P., Vergely, C., Chevet, D., Rifle, G., Rochette, L., Alteration in plasma antioxidant capacities in chronic renal failure and hemodialysis patients: a possible explanation for the increased cardiovascular risk in these patients (2000) Cardiovasc. Res., 47, pp. 618-623
  • Courderot-Masuyer, C., Lahet, J.J., Verges, B., Brun, J.M., Rochette, L., Ascorbyl free radical release in diabetic patients (2000) Cell. Mol. Biol (Noisy-le-grand), 46, pp. 1397-1401
  • Desai, I., Vitamin E analysis methods for animal tissues (1984) Methods Enzymol., 105, pp. 138-146
  • Dikolova, A.E., Kadiiska, M.B., Mason, R.P., An in vivo ESR spin-trapping study: free radical generation in rats from formate intoxication role of the Fenton reaction (2001) Proc. Natl. Acad. Sci. U.S.A., 98, pp. 13549-13553
  • Dyer, B.S., Revisión sistemática de los pejerreyes de Chile (Teleostei, Atheriniformes) (2000) Estud. Oceanol., 19, pp. 99-127
  • Evans, D.H., Piermarini, P.M., Choe, K.P., The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste (2005) Physiol. Rev., 85, pp. 97-177
  • Galleano, M., Aimo, L., Puntarulo, S., Ascorbyl radical/ascorbate ratio in plasma from iron overloaded rats as oxidative stress indicator (2002) Toxicol. Lett., 133, pp. 193-201
  • Gieseg, S.P., Cuddihy, S., Hill, J.V., Davison, W., A comparison of plasma vitamin C and E levels in two Antarctic an two temperate water fish species (2000) Comp. Biochem. Physiol. B, 125, pp. 371-378
  • Giulivi, C., Cadenas, E., The reaction of ascorbic acid with different heme iron redox states of myoglobin (1993) FEBS Lett., 332, pp. 287-290
  • Gonzalez, P.M., Abele, D., Puntarulo, S., Iron and radical content in Mya arenaria. Possible sources of NO generation (2008) Aquat. Toxicol., 89, pp. 122-128
  • Halliwell, B., Oxidants and human disease: some new concepts (1987) FASEB J., 1, pp. 358-364
  • Halliwell, B., Gutteridge, J.M.C., (1989) Free Radicals in Biology and Medicine. 2nd ed, pp. 86-187. , Clarendon Press, Oxford
  • Heise, K., Puntarulo, S., Pörtner, H.O., Abele, D., Production of reactive oxygen species by isolated mitochondria of the Antarctic bivalve Laternula elliptica (King and Broderip) under heat stress (2003) Comp. Biochem. Physiol. C, 134, pp. 79-90
  • Joseph, J.D., Lipid composition of marine and estuarine invertebrates. Part II. Mollusca (1982) Prog. Lipid Res., 21, pp. 109-153
  • Jurkiewicz, B.A., Buettner, G.R., Ultraviolet light-induced free radical formation in skin: an electron paramagnetic resonance study (1994) Photochem. Photobiol., 59, pp. 1-4
  • Kamunde, C., Early subcellular partitioning of cadmium in gill and liver of rainbow trout (Oncorhynchus mykiss) following low-to-near-lethal waterborne cadmium exposure (2009) Aquat. Toxicol., 91, pp. 291-301
  • Kotake, Y., Tanigawa, T., Tanigawa, M., Ueno, I., Allen, D.R., Lai, C., Continuous monitoring of cellular nitric oxide generation by spin trapping with an iron-dithiocarbamate complex (1996) Biochim. Biophys. Acta, 1289, pp. 362-368
  • Kozak, R.G., Malanga, G., Caro, A., Puntarulo, S., Ascorbate free radical content in photosynthetic organisms after exposure to ultraviolet-B (1997) Recent Res. Dev. Plant Physiol., 1, pp. 233-239
  • Kutnink, M.A., Hawkes, W.C., Schaus, E.E., Omaye, S.T., An internal standard method for the unattended high-performance liquid chromatographic analysis of ascorbic acid in blood components (1987) Anal. Biochem., 166, pp. 424-430
  • Lai, E.K., Crossley, C., Sridhar, R., Misra, H.P., Janzen, E.G., McCay, P.B., In vivo spin trapping of free radicals generated in brain, spleen, and liver during γ radiation of mice (1986) Arch. Biochem. Biophys., 244, pp. 156-160
  • Lowry, O.H., Rosebrough, N.J., Farr, L., Randall, R.J., Protein measurement with the Folin phenol reagent (1951) J. Biol. Chem., 193, pp. 265-275
  • Luo, Y., Su, Y., Lin, R., Shi, H., Wang, X., 2-Chlorophenol induced ROS generation in fish Carassius auratus based on the EPR method (2006) Chemosphere, 65, pp. 1064-1073
  • Lushchak, V.I., Bagnyukova, T.V., Effects of different environmental oxygen levels on free radical processes in fish (2006) Comp. Biochem. Physiol. B, 144, pp. 283-289
  • Lushchak, V.I., Bagnyukova, T.V., Hypoxia induces oxidative stress in tissues of a goby, the rotan Perccottus glenii (2007) Comp. Biochem. Physiol., 148 B, pp. 390-397
  • Malanga, G., Estevez, M.S., Calvo, J., Puntarulo, S., Oxidative stress in limpets exposed to different environmental conditions in the Beagle Channel (2004) Aquat. Toxicol., 69, pp. 299-309
  • Mason, R.P., Hanna, P.H., Burkitt, M.J., Kadiiska, M.B., Detection of oxygen-derived radical in biological systems using electron spin resonance (1994) Environ. Health Perspect., 102, pp. 33-36
  • Misra, H.P., Fridovich, I., The role of superoxide anion in the autoxidation of epinephrine and simple assay for superoxide dismutase (1972) J. Biol. Chem., 247, pp. 3170-3175
  • Oakes, K.D., McMaster, M.E., Van Der Kraak, G.J., Oxidative stress resposes in longnose sucker (Catostomus catostomus) exposed to pulp and paper mill and municipal sewage effluents (2004) Aquat. Toxicol., 67, pp. 255-271
  • Parihar, M.S., Dubay, A.K., Lipid peroxidation and ascorbic acid status in respiratory organs of male and female freshwater catfish Heteropneustes fossilis exposed to temperature increase (1995) Comp. Biochem. Physiol. C, 112, pp. 309-313
  • Philipp, E., Pörtner, H.O., Abele, D., Mitochondrial ageing of a polar and a temperate mud clam (2005) Mech. Ageing Dev., 126, pp. 610-619
  • Rice-Evans, C.A., Diplock, A.T., Symins, M.C.R., Techniques in free radical research (1991) Laboratory Techniques in Biochemistry and Molecular Biology, pp. 147-149. , Burton R.H., and Knippenberg P.H. (Eds), Elsevier, Amsterdam
  • Roginsky, V.A., Stegmann, H.B., Ascorbyl radical as natural indicator of oxidative stress: quantitative regularities (1994) Free Radic. Biol. Med., 17, pp. 93-103
  • Vergely, C., Maupoil, V., Benderitter, M., Rochette, L., Influence of the severity of myocardial ischemia on the intensity of ascorbyl free radical release and on postischemic recovery during reperfusion (1998) Free Radic. Biol. Med., 24, pp. 470-479
  • Wilhelm Filho, D., Reactive oxygen species, antioxidants and fish mitochondria (2007) Front. Biosci., 12, pp. 1229-1237
  • Wilhelm Filho, D., Marcon, J.L., Antioxidant defenses in fish of the Amazon (1996) Physiology and Biochemistry of the Fishes of the Amazon, pp. 299-312. , Val A.L., Almeida-Val V.M.L., and Randal D.J. (Eds), INPA, Manaus
  • Wilhelm Filho, D., Giulivi, D., Boveris, A., Antioxidant defenses in marine fish: I. Teleosts (1993) Comp. Biochem. Physiol. C, 106, pp. 409-413
  • Wilhelm Filho, D., Torres, M.A., Marcon, J.L., Fraga, C.G., Boveris, A., Antioxidant defenses in vertebrates-emphasis on fish and mammals (2000) Trends Comp. Biochem. Physiol., 7, pp. 37-45
  • Wilhelm Filho, D., Torres, M.A., Zaniboni-Filho, E., Pedrosa, R.C., Effect of different oxygen tensions on weight gain, feed conversion, and antioxidant status in piapiara, Leporinus elongatus (Valenciennes, 1847) (2005) Aquaculture, 244, pp. 349-357
  • Zielinski, S., Pörtner, H.O., Oxidative stress and antioxidative defense in cephalopods: a function of metabolic rate or age? (2000) Comp. Biochem. Physiol. B, 125, pp. 147-160

Citas:

---------- APA ----------
Lattuca, M.E., Malanga, G., Hurtado, C.A., Pérez, A.F., Calvo, J. & Puntarulo, S. (2009) . Main features of the oxidative metabolism in gills and liver of Odontesthes nigricans Richardson (Pisces, Atherinopsidae). Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 154(4), 406-411.
http://dx.doi.org/10.1016/j.cbpb.2009.08.004
---------- CHICAGO ----------
Lattuca, M.E., Malanga, G., Hurtado, C.A., Pérez, A.F., Calvo, J., Puntarulo, S. "Main features of the oxidative metabolism in gills and liver of Odontesthes nigricans Richardson (Pisces, Atherinopsidae)" . Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology 154, no. 4 (2009) : 406-411.
http://dx.doi.org/10.1016/j.cbpb.2009.08.004
---------- MLA ----------
Lattuca, M.E., Malanga, G., Hurtado, C.A., Pérez, A.F., Calvo, J., Puntarulo, S. "Main features of the oxidative metabolism in gills and liver of Odontesthes nigricans Richardson (Pisces, Atherinopsidae)" . Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, vol. 154, no. 4, 2009, pp. 406-411.
http://dx.doi.org/10.1016/j.cbpb.2009.08.004
---------- VANCOUVER ----------
Lattuca, M.E., Malanga, G., Hurtado, C.A., Pérez, A.F., Calvo, J., Puntarulo, S. Main features of the oxidative metabolism in gills and liver of Odontesthes nigricans Richardson (Pisces, Atherinopsidae). Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2009;154(4):406-411.
http://dx.doi.org/10.1016/j.cbpb.2009.08.004