Artículo

El editor no permite incluir ninguna versión del artículo en el Repositorio.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Metallic and dielectric nanostructures can show sharp contrasted resonances, sensitive to the environment, and high field enhancement in sub-wavelength volumes. For this reason, these structures are commonly used as molecular sensors. Only few works have focused on their application in optical microscopy, in particular in superresolution. In this work we have designed, fabricated and optically tested a nanostructured TiO2 substrate, fabricated by direct embossing of TiO2 derived film, as a substrate for fluorescence microscopy. Moreover, using numerical simulations, we have compared the signal to background noise with respect to other metallo-dielectric structures. We show that the TiO2 structure is a good candidate for reducing the thickness of the fluorescence excitation down to ∼100 nm. Therefore, this substrate can be used to obtain Total Internal Reflection (TIRF) axial resolution without a TIRF-Microscopy system. ©2015 Optical Society of America.

Registro:

Documento: Artículo
Título:Improving image contrast in fluorescence microscopy with nanostructured substrates
Autor:Brunstein, M.; Cattoni, A.; Estrada, L.; Yacomotti, A.M.
Filiación:Laboratoire de Photonique et de Nanostructures, CNRS, Université Paris-Saclay, route de Nozay, Marcoussis, F-91460, France
Quantum Electronics Lab, Dpto. de Física, Universidad de Buenos Aires and IFIBA, Conicet, Pabellón 1, Buenos Aires, 1428, Argentina
Palabras clave:Fluorescence; Fluorescence microscopy; Nanostructures; Refractive index; Titanium dioxide; Axial resolutions; Background noise; Fluorescence excitation; Metallodielectric; Molecular sensors; Nanostructured substrates; Nanostructured TiO; Total internal reflections; Substrates
Año:2015
Volumen:23
Número:23
Página de inicio:29772
Página de fin:29778
DOI: http://dx.doi.org/10.1364/OE.23.029772
Título revista:Optics Express
Título revista abreviado:Opt. Express
ISSN:10944087
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10944087_v23_n23_p29772_Brunstein

Referencias:

  • Levene, M.J., Korlach, J., Turner, S.W., Foquet, M., Craighead, H.G., Webb, W.W., Zero-mode waveguides for single-molecule analysis at high concentrations (2003) Science, 299 (5607), pp. 682-686
  • Cattoni, A., Ghenuche, P., Haghiri-Gosnet, A.M., Decanini, D., Chen, J., Pelouard, J.L., Collin, S., 1000 plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography (2011) Nano Lett, 11 (9), pp. 3557-3563
  • Punj, D., Mivelle, M., Moparthi, S.B., Van Zanten, T.S., Rigneault, H., Van Hulst, N.F., García-Parajó, M.F., Wenger, J., A plasmonic 'antenna-in-box' platform for enhanced single-molecule analysis at micromolar concentrations (2013) Nat. Nanotechnol, 8 (7), pp. 512-516
  • Block, I.D., Mathias, P.C., Ganesh, N., Jones, S.I., Dorvel, B.R., Chaudhery, V., Vodkin, L.O., Cunningham, B.T., A detection instrument for enhanced-fluorescence and label-free imaging on photonic crystal surfaces (2009) Opt. Express, 17 (15), pp. 13222-13235
  • Ganesh, N., Zhang, W., Mathias, P.C., Chow, E., Soares, J.A.N.T., Malyarchuk, V., Smith, A.D., Cunningham, B.T., Enhanced fluorescence emission from quantum dots on a photonic crystal surface (2007) Nat. Nanotechnol, 2 (8), pp. 515-520
  • Tam, F., Goodrich, G.P., Johnson, B.R., Halas, N.J., Plasmonic enhancement of molecular fluorescence (2007) Nano Lett, 7 (2), pp. 496-501
  • Gérard, D., Wenger, J., Devilez, A., Gachet, D., Stout, B., Bonod, N., Popov, E., Rigneault, H., Strong electromagnetic confinement near dielectric microspheres to enhance single-molecule fluorescence (2008) Opt. Express, 16 (19), pp. 15297-15303
  • Estrada, L.C., Martinez, O.E., Brunstein, M., Bouchoule, S., Le-Gratiet, L., Talneau, A., Sagnes, I., Yacomotti, A.M., Small volume excitation and enhancement of dye fluorescence on a 2D photonic crystal surface (2011) Opt. Express, 18 (4), pp. 3693-3699
  • Usukura, E., Shinohara, S., Okamoto, K., Lim, J., Char, K., Tamada, K., Highly confined, enhanced surface fluorescence imaging with two-dimensional silver nanoparticle sheets (2014) Appl. Phys. Lett, 104 (12), p. 121906
  • Soavi, G., Della Valle, G., Biagioni, P., Cattoni, A., Cerullo, G., Brida, D., Ultrafast non-Thermal response of Plasmonic resonance in Gold Nanoantennas (2014) CLEO 2014, OSA Technical Digest (Online) (OSA, , paper FTh4C.7
  • Hugonin, J.P., Lalanne, P., (2005) Reticolo Software for Grating Analysis, , Institut d'Optique, Palaiseau, France
  • Moharam, M.G., Grann, E.B., Pommet, D.A., Gaylord, T.K., Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings (1995) J. Opt. Soc. Am. A, 12 (5), pp. 1068-1076
  • Moharam, M.G., Pommet, D.A., Grann, E.B., Gaylord, T.K., Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: Enhanced transmittance matrix approach (1995) J. Opt. Soc. Am. A, 12 (5), pp. 1077-1086
  • Lalanne, P., Morris, G.M., Highly improved convergence of the coupled-wave method for TM polarization (1996) J. Opt. Soc. Am. A, 13 (4), pp. 779-784
  • Doerr, C.R., Kogelnik, H., Dielectric waveguide theory (2008) J. Lightwave Technol, 26 (9), pp. 1176-1187
  • Maier, X.S.A., (2007) Plasmonics: Fundamentals and Aplications, , Springer Ch. 5
  • Plain, J., Martin, J., Fabrication of aluminium nanostructures for plasmonics (2014) J. Phys. D Appl. Phys, 48 (18), p. 184002
  • Mateus, C.F.R., Huang, M.C.Y., Deng, Y., Neureuther, A.R., Chang-Hasnain, C.J., Ultra-broadband mirror using low index cladded subwavelength grating (2004) IEEE Photonics Technol. Lett, 16 (2), pp. 518-520
  • Hattori, H., Letartre, X., Seassal, C., Rojo-Romeo, P., Leclercq, J., Viktorovitch, P., Analysis of hybrid photonic crystal vertical cavity surface emitting lasers (2003) Opt. Express, 11 (15), pp. 1799-1808
  • Bryant, G.W., Abajo De García, F.J., Aizpurua, J., Mapping the plasmon resonances of metallic nanoantennas (2008) Nano Lett, 8 (2), pp. 631-636
  • Aydin, K., Ferry, V.E., Briggs, R.M., Atwater, H.A., Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers (2011) Nat. Commun, 2, p. 517
  • Cattoni, A., Faustini, M., Yacomotti, A., Decanini, D., Grosso, D., Maghiri-Gosnet, A.M., Degassing-Assisted Patterning of Sol-gel Derived Films: A Pressureless Technique for Low-cost and Large-scale Replication of Nanostructures at the 15 Nm Scale, , preparation

Citas:

---------- APA ----------
Brunstein, M., Cattoni, A., Estrada, L. & Yacomotti, A.M. (2015) . Improving image contrast in fluorescence microscopy with nanostructured substrates. Optics Express, 23(23), 29772-29778.
http://dx.doi.org/10.1364/OE.23.029772
---------- CHICAGO ----------
Brunstein, M., Cattoni, A., Estrada, L., Yacomotti, A.M. "Improving image contrast in fluorescence microscopy with nanostructured substrates" . Optics Express 23, no. 23 (2015) : 29772-29778.
http://dx.doi.org/10.1364/OE.23.029772
---------- MLA ----------
Brunstein, M., Cattoni, A., Estrada, L., Yacomotti, A.M. "Improving image contrast in fluorescence microscopy with nanostructured substrates" . Optics Express, vol. 23, no. 23, 2015, pp. 29772-29778.
http://dx.doi.org/10.1364/OE.23.029772
---------- VANCOUVER ----------
Brunstein, M., Cattoni, A., Estrada, L., Yacomotti, A.M. Improving image contrast in fluorescence microscopy with nanostructured substrates. Opt. Express. 2015;23(23):29772-29778.
http://dx.doi.org/10.1364/OE.23.029772