Artículo

El editor no permite incluir ninguna versión del artículo en el Repositorio.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Tunable second harmonic (SH) polaritons have been efficiently generated in ZnO nanocombs, when the material is excited close to half of the band-gap. The nonlinear signal couples to the nanocavity modes, and, as a result, Fabry-Pérot resonances with high Q factors of about 500 are detected. Due to the low effective volume of the confined modes, matterlight interaction is very much enhanced. This effect lowers the velocity of the SH polariton in the material by 50 times, and increases the SH confinement inside the nanocavity due to this higher refractive index. We also show that the SH phase-matching condition is achieved through LOphonon mediation. Finally, birrefringence of the crystal produces a strong SH intensity dependence on the input polarization, with a high polarization contrast, which could be used as a mechanism for light switching in the nanoscale. © 2014 Optical Society of America.

Registro:

Documento: Artículo
Título:Nonlinear excitation of polariton cavity modes in ZnO single nanocombs
Autor:Capeluto, M.G.; Grinblat, G.; Tirado, M.; Comedi, D.; Bragas, A.V.
Filiación:Laboratorio de Electrónica Cuántica, Depto. de Física, FCEyN, UBA, 1428 Buenos Aires, Argentina
IFIBA-CONICET-UBA, 1428 Buenos Aires, Argentina
Laboratorio de Física del Sólido, Depto. de Física, FACET, UNT, 4000 S.M. de Tucumán, Argentina
CONICET, Argentina
Laboratorio de Nanomateriales y de Propiedades Dieléctricas, Depto. de Física, FACET, UNT, 4000 S.M. de Tucumán, Argentina
Palabras clave:Energy gap; Phase matching; Phonons; Photons; Polarization; Q factor measurement; Refractive index; Zinc oxide; Effective volume; Input polarization; Intensity dependence; Nonlinear excitation; Nonlinear signals; Phase matching conditions; Polarization contrast; Second harmonics; Quantum theory
Año:2014
Volumen:22
Número:5
Página de inicio:5341
Página de fin:5349
DOI: http://dx.doi.org/10.1364/OE.22.005341
Título revista:Optics Express
Título revista abreviado:Opt. Express
ISSN:10944087
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10944087_v22_n5_p5341_Capeluto

Referencias:

  • Johnson, J.C., Yan, H., Yang, P., Saykally, R.J., Optical cavity effects in ZnO nanowire lasers and waveguides (2003) J. Phys. Chem. B, 107 (34), pp. 8816-8828
  • Van Vugt, L.K., Rühle, S., Ravindran, P., Gerritsen, H.C., Kuipers, L., Vanmaekelbergh, D., Exciton polaritons confined in a ZnO nanowire cavity (2006) Phys. Rev. Lett., 97 (14), p. 147401
  • Li, W., Gao, M., Zhang, X., Liu, D., Peng, L.-M., Xie, S., Microphotoluminesce study of exciton polaritons guided in ZnO nanorods (2009) Appl. Phys. Lett., 95 (17), p. 173109
  • Li, H.Y., Rühle, S., Khedoe, R., Koenderink, A.F., Vanmaekelbergh, D., Polarization, microscopic origin, and mode structure of luminescence and lasing from single ZnO nanowires (2009) Nano Lett., 9 (10), pp. 3515-3520
  • Chen, S.L., Chen, W.M., Buyanova, I.A., Slowdown of light due to exciton-polariton propagation in ZnO (2011) Phys. Rev. B, 83 (24), p. 245212
  • Sturm, C., Hilmer, H., Rheinländer, B., Schmidt-Grund, R., Grundmann, M., Cavity-photon dispersion in one-dimensional confined microresonator with an optically anisotropic cavity material (2011) Phys. Rev. B, 83 (20), p. 205301
  • Das, A., Heo, J., Bayraktaroglu, A., Guo, W., Ng, T.K., Phillips, J., Ooi, B.S., Bhattacharya, P., Room temperature strong coupling effects from single ZnO nanowire microcavity (2012) Opt. Express, 20 (11), pp. 11830-11837
  • Li, F., Orosz, L., Kamoun, O., Bouchoule, S., Brimont, C., Disseix, P., Guillet, T., Zuniga-Perez, J., Fabrication and characterization of a room-temperature ZnO polariton laser (2013) Appl. Phys. Lett., 102 (19), p. 191118
  • Lu, T.C., Lai, Y.Y., Lan, Y.P., Huang, S.W., Chen, J.R., Wu, Y.C., Hsieh, W.F., Deng, H., Room temperature polariton lasing vs photon lasing in a ZnO-based hybrid microcavity (2012) Opt. Express, 20 (5), pp. 5530-5537
  • Klingshirn, C.F., (2005) Semiconductor Optics, , Springer
  • Huang, M.H., Mao, S., Feick, H., Yan, H., Wu, Y., Kind, H., Weber, E., Yang, P., Room-temperature ultraviolet nanowire nanolasers (2001) Science, 292 (5523), pp. 1897-1899
  • Vanmaekelbergh, D., Van Vugt, L.K., ZnO nanowire lasers (2011) Nanoscale, 3 (7), pp. 2783-2800
  • Dai, J., Zeng, J.H., Lan, S., Wan, X., Tie, S.L., Competition between second harmonic generation and twophotoninduced luminescence in single, double and multiple ZnO nanorods (2013) Opt. Express, 21 (8), pp. 10025-10038
  • Johnson, J.C., Yan, H., Schaller, R.D., Petersen, P.B., Yang, P., Saykally, R.J., Near-field imaging of nonlinear optical mixing in single zinc oxide nanowires (2012) Nano Lett., 2 (4), pp. 279-283
  • Das, S.K., Bock, M., O'Neill, C., Grunwald, R., Lee, K., Lee, H.W., Lee, S., Rotermund, F., Efficient second harmonic generation in ZnO nanorod arrays with broadband ultrashort pulses (2008) Appl. Phys. Lett., 93 (18), p. 181112
  • Shi, S.L., Xu, S.J., Xu, Z.X., Roy, V.A.L., Che, C.M., Broadband second harmonic generation from ZnO nano-tetrapods (2011) Chem. Phys. Lett., 506 (4-6), pp. 226-229
  • Jang, J.I., Park, S., Frazer, N.L., Ketterson, J.B., Lee, S., Roy, B.K., Cho, J., Strong P-band emission and third harmonic generation from ZnO nanorods (2012) Solid State Commun., 152 (14), pp. 1241-1243
  • Chan, S.W., Barille, E., Nunzi, J.M., Tam, K.H., Leung, Y.H., Chan, W.K., Djurišiæ, A.B., Second harmonic generation in zinc oxide nanorods (2006) Appl. Phys. B, 84 (1-2), pp. 351-355
  • Lu, X., Zhou, H., Salamo, G.J., Tian, Z.R., Xiao, M., Generation of exciton-polaritons in ZnO microcrystallines using second-harmonic generation (2012) New J. Phys., 14 (7), p. 073017
  • Grinblat, G., Capeluto, M.G., Tirado, M., Comedi, D., Bragas, A.V., Two-photon photoluminescence from hierarchical ZnO nanostructures (2012) ECS Trans., 45 (5), pp. 67-72
  • Vahala, K.J., Optical microcavities (2003) Nature, 424 (6950), pp. 839-846
  • Ozgur, U., Alivov, Ya.I., Liu, C., Teke, A., Reshchikov, M.A., Dogan, S., Avrutin, V., Morkoc, H., A comprehensive review of ZnO materials and devices (2005) J. Appl. Phys., 98 (4), p. 041301
  • Djurisiæ, A.B., Kwok, W.M., Leung, Y.H., Phillips, D.L., Chan, W.K., Stimulated emission in ZnO nanostructures: A time-resolved study (2005) J. Phys. Chem. B, 109 (41), pp. 19228-19233
  • Djurisiæ, A.B., Leung, Y.H., Optical properties of ZnO nanostructures (2006) Small, 2 (8-9), pp. 944-961
  • Huang, M.H., Mao, S., Feick, H., Yan, H., Wu, Y., Kind, H., Weber, E., Yang, P., Room-temperature ultraviolet nanowire nanolasers (2001) Science, 292 (5523), pp. 1897-1899
  • Grinblat, G., Capeluto, M.G., Tirado, M., Bragas, A.V., Comedi, D., Hierarchical ZnO nanostructures: Growth mechanisms and surface correlated photoluminescence (2012) Appl. Phys. Lett., 100 (23), p. 233116
  • Phan, T.L., Sun, Y., Vincent, R., Structural characterization of CVD-grown ZnO nanocombs (2011) J. Korean Phys. Soc., 59 (1), pp. 60-64
  • Zang, C.H., Liu, Y.C., Zhao, D.X., Zhang, J.Y., Shen, D.Z., The synthesis and optical properties of ZnO nanocombs (2010) J. Nanosci. Nanotechnol., 10 (4), pp. 2370-2374
  • Hamby, D.W., Lucca, D.A., Klopfstein, D.J., Cantwell, G., Temperature dependent exciton photoluminescence of bulk ZnO (2003) J. Appl. Phys., 93 (6), pp. 3214-3217
  • Lagois, J., Depth-dependent eigenenergies and damping of excitonic polaritons near a semiconductor surface (1981) Phys. Rev. B, 23 (10), pp. 5511-5520
  • Takagi, A., Nakamura, A., Yoshikaie, A., Yoshioka, S., Adachi, S., Chichibu, S.F., Sota, T., Signatures of.1-.5 mixed-mode polaritons in polarized reflectance spectra of ZnO (2012) J. Phys. Condens. Matter, 24 (41), p. 415801
  • Jung, S.W., Park, W.I., Cheong, H.D., Yi, G.C., Jang, H.M., Hong, S., Joo, T., Time-resolved and timeintegrated photoluminescence in ZnO epilayers grown onAl2O3 (0001) by metalorganic vapor phase epitaxy (2002) Appl. Phys. Lett., 80 (11), p. 1924
  • Dai, D.C., Xu, S.J., Shi, S.L., Xie, M.H., Che, C.M., Efficient multiphoton-absorption-induced luminescence in single-crystalline ZnO at room temperature (2005) Opt. Lett., 30 (24), pp. 3377-3379
  • Van Vugt, L.K., Piccione, B., Cho, C.H., Nukala, P., Agarwal, R., One-dimensional polaritons with sizetunable and enhanced coupling strengths in semiconductor nanowires (2011) Proc. Natl. Acad. Sci. U. S. A., 108 (25), pp. 10050-10055
  • Han, N.S., Shim, H.S., Lee, S., Park, S.M., Choi, M.Y., Song, J.K., Light-matter interaction and polarization of single ZnO nanowire lasers (2012) Phys. Chem. Chem. Phys., 14 (30), pp. 10556-10563
  • Gao, M., Cheng, R., Li, W., Li, Y., Zhang, X., Xie, S., Directly probing the anisotropic optical emission of individual ZnO nanorods (2010) J. Phys. Chem. C, 114 (25), pp. 11081-11086
  • Choppali, U., Gorman, B.P., Effect of annealing on room temperature photoluminescence of polymeric precursor derived ZnO thin films on sapphire substrates (2008) Opt. Mater., 31 (2), pp. 143-148
  • Larciprete, M.C., Bertolotti, M., Second harmonic generation and related studies on ZnO films" (2013) Handbook of Zinc Oxide and Related Materials, Part II, pp. 141-166. , Zhe Chuan Feng eds. CRC Press

Citas:

---------- APA ----------
Capeluto, M.G., Grinblat, G., Tirado, M., Comedi, D. & Bragas, A.V. (2014) . Nonlinear excitation of polariton cavity modes in ZnO single nanocombs. Optics Express, 22(5), 5341-5349.
http://dx.doi.org/10.1364/OE.22.005341
---------- CHICAGO ----------
Capeluto, M.G., Grinblat, G., Tirado, M., Comedi, D., Bragas, A.V. "Nonlinear excitation of polariton cavity modes in ZnO single nanocombs" . Optics Express 22, no. 5 (2014) : 5341-5349.
http://dx.doi.org/10.1364/OE.22.005341
---------- MLA ----------
Capeluto, M.G., Grinblat, G., Tirado, M., Comedi, D., Bragas, A.V. "Nonlinear excitation of polariton cavity modes in ZnO single nanocombs" . Optics Express, vol. 22, no. 5, 2014, pp. 5341-5349.
http://dx.doi.org/10.1364/OE.22.005341
---------- VANCOUVER ----------
Capeluto, M.G., Grinblat, G., Tirado, M., Comedi, D., Bragas, A.V. Nonlinear excitation of polariton cavity modes in ZnO single nanocombs. Opt. Express. 2014;22(5):5341-5349.
http://dx.doi.org/10.1364/OE.22.005341