Artículo

La versión final de este artículo es de uso interno de la institución. El editor no permite incluir ninguna versión del artículo en el Repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We present an experimental and theoretical study of a new scheme for Near-Field Fluorescence Correlation Spectroscopy that, using the field enhancement by optical nanoantennas, allows the reduction of the observation volume 4 orders of magnitude below the diffraction limit. This reduction can be used in two different ways: to increase the sample concentration and to improve the spatial resolution of the dynamics under study. Our experimental results using individual gold nanoparticles and a 150μM Rose Bengal solution in glycerol confirm the volume reduction. © 2008 Optical Society of America.

Registro:

Documento: Artículo
Título:10000 times volume reduction for fluorescence correlation spectroscopy using nano-antennas
Autor:Estrada, L.C.; Aramendía, P.F.; Martínez, O.E.
Filiación:Dpto. de Física. Fac. de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428, Buenos Aires, Argentina
INQUIMAE, Departamento de Química Inorgánica, Analítica y Química Física, Universidad de Buenos Aires, 1428, Buenos Aires, Argentina
CONICET. Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
Palabras clave:Antennas; Diffraction; Fluorescence; Fluorescence spectroscopy; Optical correlation; Spectroscopic analysis; Diffraction limits; Field enhancement; Fluorescence Correlation Spectroscopy; Gold Nanoparticles; Near-field fluorescence; Orders of magnitude; Sample concentration; Spatial resolution; Nanoantennas; nanomaterial; article; chemistry; computer aided design; computer simulation; equipment; equipment design; instrumentation; light; methodology; radiation scattering; reproducibility; sensitivity and specificity; spectrofluorometry; theoretical model; ultrastructure; Computer Simulation; Computer-Aided Design; Equipment Design; Equipment Failure Analysis; Light; Models, Theoretical; Nanostructures; Reproducibility of Results; Scattering, Radiation; Sensitivity and Specificity; Spectrometry, Fluorescence
Año:2008
Volumen:16
Número:25
Página de inicio:20597
Página de fin:20602
DOI: http://dx.doi.org/10.1364/OE.16.020597
Título revista:Optics Express
Título revista abreviado:Opt. Express
ISSN:10944087
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10944087_v16_n25_p20597_Estrada

Referencias:

  • Magde, D., Elson, E., Webb, W.W., Thermodynamic fluctuations in a reacting system-measurement by fluorescence correlation spectroscopy (1972) Phys. Rev. Lett, 29, pp. 705-708
  • Bismuto, E., Gratton, E., Lamb, D.C., Dynamics of ANS Binding to Tuna Apomyoglobin Measured with Fluorescence Correlation. Spectroscopy (2001) Biophys. J, 81, pp. 3510-3521
  • Kastrup, L., Blom, H., Eggeling, C., Hell, S.W., Fluorescence Correlation Spectroscopy in Subdiffraction Focal Volumes (2005) Phys. Rev. Lett, 94, p. 178104
  • Klar, T.A., Jakobs, S., Dyba, M., Egner, A., Hell, S.W., Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission (2000) Proc. Nat. Acad Sci, 97, pp. 8206-8210
  • Rigneault, H., Lenne, P., Fluorescence correlation spectroscopy on a mirror (2003) J. Opt. Soc. Am. B, 20, pp. 2203-2214
  • Starr, T.E., Thompson, N.L., Total Internal Reflection with Fluorescence Correlation Spectroscopy: Combined Surface Reaction and Solution Diffusion (2001) Biophys. J, 80, pp. 1575-1584
  • García-Parajó, M.F., de Bakker, B.I., Koopman, M., Cambi, A., de Lange, F., Figdor, C.G., van Hulst, N.F., Near-Field Fluorescence Microscopy: An optical Nanotool to Study Protein Organization at the Cell Membrane (2005) NanoBiotechnology, 1, pp. 113-120
  • Kawata, Y., Xu, C., Denk, W., Feasibility of molecular-resolution fluorescence near-field microscopy using multi-photon absorption and field enhancenment near a sharp tip (1999) J. Appl. Phys, 85, p. 1294
  • Calander, N., Muthu, P., Gryczynski, Z., Gryczynski, I., Borejdo, J., Fluorescence correlation spectroscopy in a reverse Kretchmann surface plasmon assisted microscope (2008) Opt. Express, 16, pp. 13381-13390. , http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-17-13381
  • Borejdo, J., Calander, N., Gryczynski, Z., Gryczynski, I., Fluorescence correlation spectroscopy in surface plasmon coupled emission microscope (2006) Opt. Express, 14, pp. 7878-7888. , http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-17-7878
  • Foquet, M., Korlach, J., Zipfel, W.R., Webb, W.W., Craighead, H.G., Focal Volume Confinement by Submicrometer-Sized Fluidic Channels (2004) Anal. Chem, 76, pp. 1618-1626
  • Levene, M.J., Korlach, J., Turner, S.W., Foquet, M., Craighead, H.G., Webb, W.W., Zero-Mode Waveguides for Single-Molecule Analysis at High Concentrations (2003) Science, 299, pp. 682-686
  • Leutenegger, M., Gösch, M., Perentes, A., Hoffmann, P., Martin, O.J.F., Lasser, T., Confining the sampling volume for Fluorescence Correlation Spectroscopy using a sub-wavelength sized aperture (2006) Opt. Express, 14, pp. 956-969. , http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-2-956
  • Wenger, J., Gérard, D., Lenne, P., Rigneault, H., Dintinger, J., Ebbesen, T.W., Boned, A., Marguet, D., Dual-color fluorescence cross-correlation spectroscopy in a single nanoaperture : Towards rapid multicomponent screening at high concentrations (2006) Opt. Express, 14, pp. 12206-12216. , http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-25-12206
  • Rigneault, H., Capoulade, J., Dintinger, J., Wenger, J., Bonod, N., Popov, E., Ebbesen, T.W., Lenne, P.F., Enhancement of Single-Molecule Fluorescence Detection in Subwavelength Apertures (2005) Phys. Rev. Lett, 95, p. 117401
  • (2002) Single-Molecule Detection in Solution-Methods and Applications, , C. Zander, J. Enderlein, R. A. Keller ed, Wiley-VCH, Chap. 3
  • Fradin, C., Abu-Arish, A., Granek, R., Elbaum, M., Fluorescence Correlation Spectroscopy Close to a Fluctuating Membrane (2003) Biophys. J, 84, pp. 2005-2020
  • Novotny, L., Hecht, B., (2007) Principles of Nano-Optics, , Cambridge University Press
  • Tam, F., Goodrich, G.P., Johnson, B.R., Halas, N.J., Plasmonic Enhancement of Molecular Fluorescence (2007) Nano Lett, 7, pp. 496-501
  • Aslan, K., Gryczynski, I., Malicka, J., Matveeva, E., Lakowicz, J.R., Geddes, C.D., Metal-enhanced fluorescence: An emerging tool in biotechnology (2005) Curr. Op. in Biotech, 16, pp. 55-62
  • Muskens, O.L., Giannini, V., Sánchez-Gil, J.A., Gómez Rivas, J., Strong Enhancement of the Radiative Decay Rate of Emitters by Single Plasmonic Nanoantennas (2007) Nano Lett, 7, pp. 2871-2875
  • Anger, P., Bharadwaj, P., Novotny, L., Enhancement and Quenching of Single-Molecule Fluorescence (2006) Phys. Rev. Lett, 96, p. 113002
  • Bharadwaj, P., Novotny, L., Spectral dependence of single molecule fluorescence enhancement (2007) Opt. Express, 15, pp. 14266-14274. , http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-21-14266

Citas:

---------- APA ----------
Estrada, L.C., Aramendía, P.F. & Martínez, O.E. (2008) . 10000 times volume reduction for fluorescence correlation spectroscopy using nano-antennas. Optics Express, 16(25), 20597-20602.
http://dx.doi.org/10.1364/OE.16.020597
---------- CHICAGO ----------
Estrada, L.C., Aramendía, P.F., Martínez, O.E. "10000 times volume reduction for fluorescence correlation spectroscopy using nano-antennas" . Optics Express 16, no. 25 (2008) : 20597-20602.
http://dx.doi.org/10.1364/OE.16.020597
---------- MLA ----------
Estrada, L.C., Aramendía, P.F., Martínez, O.E. "10000 times volume reduction for fluorescence correlation spectroscopy using nano-antennas" . Optics Express, vol. 16, no. 25, 2008, pp. 20597-20602.
http://dx.doi.org/10.1364/OE.16.020597
---------- VANCOUVER ----------
Estrada, L.C., Aramendía, P.F., Martínez, O.E. 10000 times volume reduction for fluorescence correlation spectroscopy using nano-antennas. Opt. Express. 2008;16(25):20597-20602.
http://dx.doi.org/10.1364/OE.16.020597