Artículo

Massri, C.; Molinuevo, A.; Quallbrunn, F. "The Kupka scheme and unfoldings" (2018) Asian Journal of Mathematics. 22(6):1025-1046
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Let ω be a differential 1-form defining an algebraic foliation of codimension 1 in projective space. In this article we use commutative algebra to study the singular locus of ω through its ideal of definition. Then, we expose the relation between the ideal defining the Kupka components of the singular set of ω and the first order unfoldings of ω. Exploiting this relation, we show that the set of Kupka points of ω is generically not empty. As an application of these results, we can compute the ideal of first order unfoldings for some known components of the space of foliations. © 2018 International Press.

Registro:

Documento: Artículo
Título:The Kupka scheme and unfoldings
Autor:Massri, C.; Molinuevo, A.; Quallbrunn, F.
Filiación:Departamento de Matemática, Ciudad Universitaria, Buenos Aires, CP C1428EGA, Argentina
Palabras clave:Foliation; Kupka singularities; Unfoldings
Año:2018
Volumen:22
Número:6
Página de inicio:1025
Página de fin:1046
DOI: http://dx.doi.org/10.4310/AJM.2018.v22.n6.a3
Título revista:Asian Journal of Mathematics
Título revista abreviado:Asian J. Math.
ISSN:10936106
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10936106_v22_n6_p1025_Massri

Referencias:

  • Atiyah, M.F., Macdonald, I.G., (1969) Introduction to commutative algebra, Addison-Wesley Publishing Co, , Reading, Mass.-London-Don Mills, Ont
  • Ballico, E., Addendum: "A splitting theorem for the Kupka component of a foliation of CP n , n ≥ 6 (1995) [Ann. Inst. Fourier (Grenoble), 45 (4), pp. 1112-1119. , Ann. Inst. Fourier (Grenoble), 49:4 (1999), pp. 1423-1425
  • Calvo-Andrade, O., Foliations with a Kupka component on algebraic manifolds, Bol (1999) Soc. Brasil. Mat. (N.S.), 30 (2), pp. 183-197
  • Calvo-Andrade, O., El espacio de foliaciones holomorfas de codimensión uno, volume 2 of Monografías del Seminario Iberoamericano de Matemáticas (2003) Monographs of the Seminario Iberoamericano de Matemáticas Instituto Interuniversitario de Estudios de Iberoamerica y Portugal, Tordesillas
  • Calvo-Andrade, O., Cerveau, D., Giraldo, L., Lins Neto, A., Irreducible components of the space of foliations associated to the affne Lie algebra (2004) Ergodic Theory Dynam. Systems, 24 (4), pp. 987-1014
  • Calvo-Andrade, O., Mendes, L.G., Pan, I., Foliations with radial Kupka set and pencils of Calabi-Yau hypersurfaces (2006) Compos. Math, 142 (6), pp. 1587-1593
  • Calvo-Andrade, O., Soares, M., Chern numbers of a Kupka component (1994) Ann. Inst. Fourier (Grenoble), 44 (4), pp. 1219-1236
  • Cerveau, D., Lins Neto, A., (1994) Codimension one foliations in CP n , n ≥ 3, with Kupka components, Astérisque, 222 (4), pp. 93-133. , Complex analytic methods in dynamical systems (Rio de Janeiro, 1992)
  • Cerveau, D., Lins Neto, A., Edixhoven, S.J., Pull-back components of the space of holomorphic foliations on CP(n) n ≥ 3 (2001) J. Algebraic Geom, 10 (4), pp. 695-711
  • Cerveau, D., Lins-Neto, A., Loray, F., Pereira, J.V., Touzet, F., Complex codimension one singular foliations and Godbillon-Vey sequences (2007) Mosc. Math. J, 7 (1), pp. 21-54
  • Cukierman, F., Pereira, J.V., Stability of holomorphic foliations with split tangent sheaf, Amer (2008) J. Math, 130 (2), pp. 413-439
  • Cukierman, F., Soares, M.G., Vainsencher, I., Singularities of logarithmic foliations (2006) Compos. Math, 142 (1), pp. 131-142
  • Dubinsky, M., Massri, C.D., Molinuevo, A., Quallbrunn, F., DiffAlg a differential algebra library, , http://www.dm.uba.ar/DiffAlg/, to appear in Journal of Software for Algebra and Geometry
  • Eisenbud, D., (1995) Commutative algebra, volume 150 of "Graduate Texts in Mathematics", , Springer-Verlag, New York With a view toward algebraic geometry
  • Griffiths, P., Harris, J., Principles of algebraic geometry, Wiley Classics Library, p. 1994. , John Wiley & Sons Inc., New York, . Reprint of the 1978 original
  • Grothendieck, A., Éléments de géométrie algébrique. IV: Étude locale des schémas et des morphismes de schémas. (Troisième partie). Rédigé avec la collaboration de Jean Dieudonné., Publ (1966) Math., Inst. Hautes Étud. Sci, 28, pp. 1-255
  • Grayson, D.R., Stillman, M.E., Macaulay A software system for research in algebraic geometry, , http://www.math.uiuc.edu/Macaulay2/
  • Hartshorne, R., Algebraic geometry (1977) Graduate Texts in Mathematics, 52. , Springer-Verlag, New York
  • Kupka, I., The singularities of integrable structurally stable Pfaffan forms (1964) Proc. Nat. Acad. Sci. U.S.A, 52, pp. 1431-1432
  • Lins Neto, A., Componentes irredutíveis dos espacos de folheacões, Publicacões Matemáticas do IMPA. [IMPA Mathematical Publications] (2007) Instituto Nacional de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, , 26o Colóquio Brasileiro de Matemática. [26th Brazilian Mathematics Colloquium]
  • Malgrange, B., Frobenius avec singularités. I. Codimension un, Inst. Hautes Études Sci (1976) Publ. Math, 46, pp. 163-173
  • Malgrange, B., Frobenius avec singularités. II. Le cas général (1977) Invent. Math, 39 (1), pp. 67-89
  • Matsumura, H., Commutative ring theory (1986) . Translated from the Japanese by M. Reid, 8. , of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge
  • Molinuevo, A., Unfoldings and deformations of rational and logarithmic foliations (2016) Ann. Inst. Fourier (Grenoble), 66 (4), pp. 1583-1613
  • Quallbrunn, F., Families of distributions and Pfaff systems under duality (2015) Journal of Singularities, 11, pp. 164-189
  • Scárdua, B.A., Camacho, C., Holomorphic foliations and Kupka singular sets (1999) Comm. Anal. Geom, 7 (3), pp. 623-640
  • Serre, J.-P., Algèbre locale. Multiplicités, volume 11 of Cours au Collège de France (1965) Rédigé par Pierre Gabriel, pp. 1957-1958. , Seconde édition, 1965. Lecture Notes in Mathematics, Springer-Verlag, Berlin
  • Suwa, T., Unfoldings of complex analytic foliations with singularities (1983) Japan. J. Math. (N.S.), 9 (1), pp. 181-206
  • Suwa, T., Unfoldings of foliations with multiform first integrals, Ann (1983) Inst. Fourier (Grenoble), 33 (3), pp. 99-112
  • Suwa, T., Unfoldings of meromorphic functions (1983) Math. Ann, 262 (2), pp. 215-224
  • Suwa, T., (1995) Unfoldings of codimension one complex analytic foliation singularities, in "Singularity theory, pp. 817-865. , World Sci. Publ., River Edge, NJ,(Trieste, 1991)"

Citas:

---------- APA ----------
Massri, C., Molinuevo, A. & Quallbrunn, F. (2018) . The Kupka scheme and unfoldings. Asian Journal of Mathematics, 22(6), 1025-1046.
http://dx.doi.org/10.4310/AJM.2018.v22.n6.a3
---------- CHICAGO ----------
Massri, C., Molinuevo, A., Quallbrunn, F. "The Kupka scheme and unfoldings" . Asian Journal of Mathematics 22, no. 6 (2018) : 1025-1046.
http://dx.doi.org/10.4310/AJM.2018.v22.n6.a3
---------- MLA ----------
Massri, C., Molinuevo, A., Quallbrunn, F. "The Kupka scheme and unfoldings" . Asian Journal of Mathematics, vol. 22, no. 6, 2018, pp. 1025-1046.
http://dx.doi.org/10.4310/AJM.2018.v22.n6.a3
---------- VANCOUVER ----------
Massri, C., Molinuevo, A., Quallbrunn, F. The Kupka scheme and unfoldings. Asian J. Math. 2018;22(6):1025-1046.
http://dx.doi.org/10.4310/AJM.2018.v22.n6.a3