Artículo

Mercader, A.G.; Duchowicz, P.R.; Fernández, F.M.; Castro, E.A.; Cabrerizo, F.M.; Thomas, A.H. "Predictive modeling of the total deactivation rate constant of singlet oxygen by heterocyclic compounds" (2009) Journal of Molecular Graphics and Modelling. 28(1):12-19
La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We constructed a predictive model of the total deactivation rate constant (kt) of singlet oxygen by heterocyclic compounds that are widespread in biological systems and participate in highly relevant biologic functions related with photochemical processes, by means of quantitative structure-property relationships (QSPR). The study of the reactivity of singlet oxygen with biomolecules provides their antioxidant capability, and the determination of the rate constants allows evaluation of the efficiencies of these processes. Our optimal linear model based on 41 molecular structures, which have not been used previously in a QSPR study, consists of six variables, selected from more than thousand geometrical, topological, quantum-mechanical and electronic types of molecular descriptors. Our recently developed strategy to determine the optimal number of descriptors in model is successfully applied. As a practical application of our QSPR model we estimated the unknown kt of several heterocyclic compounds that are of particular interest for further experimental studies in our research group. © 2009 Elsevier Inc. All rights reserved.

Registro:

Documento: Artículo
Título:Predictive modeling of the total deactivation rate constant of singlet oxygen by heterocyclic compounds
Autor:Mercader, A.G.; Duchowicz, P.R.; Fernández, F.M.; Castro, E.A.; Cabrerizo, F.M.; Thomas, A.H.
Filiación:Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas INIFTA (UNLP, CCT La Plata-CONICET), División Química Teórica, Diag. 113 y 64, Sucursal 4, C.C. 16, 1900 La Plata, Argentina
Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR-CONICET), Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Pabellon 2, 3p, Ciudad Universitaria, 1428 Buenos Aires, Argentina
Palabras clave:Enhanced replacement method; Genetic algorithm; Heterocycles; QSPR; Singlet oxygen; Biologic functions; Deactivation rate; Descriptors; Enhanced replacement method; Experimental studies; Heterocycles; Heterocyclic compound; Molecular descriptors; Optimal linear model; Optimal number; Photochemical process; Predictive modeling; Predictive models; QSPR; QSPR model; Quantitative structure property relationships; Quantum mechanical; Research groups; Singlet oxygen; Biological systems; Molecular biology; Oxygen; Sulfur compounds; Rate constants; folic acid; heterocyclic compound; histamine; indole derivative; oxazole derivative; pterin derivative; pyridinium derivative; pyrrole derivative; quinoline derivative; singlet oxygen; article; genetic algorithm; mathematical model; molecular interaction; molecular model; molecule; photochemistry; prediction; priority journal; quantitative structure property relation; quantum mechanics; Heterocyclic Compounds; Models, Chemical; Quantitative Structure-Activity Relationship; Singlet Oxygen
Año:2009
Volumen:28
Número:1
Página de inicio:12
Página de fin:19
DOI: http://dx.doi.org/10.1016/j.jmgm.2009.03.002
Título revista:Journal of Molecular Graphics and Modelling
Título revista abreviado:J. Mol. Graph. Model.
ISSN:10933263
CODEN:JMGMF
CAS:folic acid, 59-30-3, 6484-89-5; histamine, 51-45-6, 56-92-8, 93443-21-1; pterin derivative, 948-60-7; Heterocyclic Compounds; Singlet Oxygen, 17778-80-2
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10933263_v28_n1_p12_Mercader

Referencias:

  • Clennana, E.L., Paceb, A., Advances in singlet oxygen chemistry (2005) Tetrahedron, 61, pp. 6665-6691
  • Schweitzer, C., Schmidt, R., Physical mechanisms of generation and deactivation of singlet oxygen (2003) Chem. Rev., 103, pp. 1685-1757
  • Foote, C.S., Clennan, E.L., (1995) Properties and Reactions of Singlet Dioxygen in Active Oxygen in Chemistry, , Chapman & Hall, New York
  • DeRosa, M.C., Crutchley, R.J., Photosensitized singlet oxygen and its applications (2002) Coord. Chem. Rev., 233-234, pp. 351-371
  • Briviba, K., Klotz, L.O., Sies, H., Toxic and signaling effects of photochemically or chemically generated singlet oxygen in biological systems (1997) Biol. Chem., 378, pp. 1259-1265
  • Cadenas, E., Biochemistry of oxygen toxicity (1989) Annu. Rev. Biochem., 58, pp. 79-110
  • Kahn, A.U., Direct spectroscopic observation of 1.27 mm and 1.58 mm emission of singlet (1Δg) molecular oxygen in chemically generated and dye-photosensitized liquid solutions at room temperature (1980) Chem. Phys. Lett., 72, pp. 112-114
  • Thomas, A.H., Lorente, C., Capparelli, A.L., Martínez, C.G., Braun, A.M., Oliveros, E., Singlet oxygen (1Δg) production by pterin derivatives in aqueous solutions (2003) Photochem. Photobiol. Sci., 2, pp. 245-250
  • Lorente, C., Thomas, A.H., Photophysics and photochemistry of pterins in aqueous solution (2006) Acc. Chem. Res., 39, pp. 395-402
  • Cabrerizo, F.M., Dántola, M.L., Petroselli, G., Capparelli, A.L., Thomas, A.H., Braun, A.M., Lorente, C., Oliveros, E., Reactivity of conjugated and unconjugated pterins with singlet oxygen (O2(1Δg)): physical quenching and chemical reaction (2007) Photochem. Photobiol., 83, pp. 526-534
  • Hansch, C., Leo, A., (1995) Exploring QSAR. Fundamentals and Applications in Chemistry and Biology, , American Chemical Society, Washington, D.C
  • Trinajstic, N., (1992) Chemical Graph Theory, , CRC Press, Boca Raton, FL
  • Katritzky, A.R., Lobanov, V.S., Karelson, M., (1995) Chem. Soc. Rev., 24, pp. 279-287
  • Dantola, M.L., Thomas, A.H., Braun, A.M., Oliveros, E., Lorente, C., Singlet oxygen (O2(1Δg)) quenching by dihydropterins (2007) J. Phys. Chem. A, 111, pp. 4280-4288
  • Wilkinson, F., Helman, P.W., Ross, A.B., Rate constants for the decay and reactions of the lowest electronically excited singlet state of molecular oxygen in solution. An expanded and revised compilation (1995) J. Phys. Chem. Ref. Data, 24, pp. 663-677
  • Mercader, A.G., Duchowicz, P.R., Fernandez, F.M., Castro, E.A., Modified and enhanced replacement method for the selection of molecular descriptors in QSAR and QSPR theories (2008) Chemom. Intell. Lab Syst., 92, pp. 138-144
  • Duchowicz, P.R., Castro, E.A., Fernández, F.M., González, M.P., A new search algorithm of QSPR/QSAR theories: normal boiling points of some organic molecules (2005) Chem. Phys. Lett., 412, pp. 376-380
  • Duchowicz, P.R., Castro, E.A., Fernández, F.M., Alternative algorithm for the search of an optimal set of descriptors in QSAR-QSPR studies (2006) MATCH Commun. Math. Comput. Chem., 55, pp. 179-192
  • Duchowicz, P.R., Fernández, M., Caballero, J., Castro, E.A., Fernández, F.M., QSAR of non-nucleoside inhibitors of hiv-1 reverse transcriptase (2006) Bioorg. Med. Chem., 14, pp. 5876-5889
  • Helguera, A.M., Duchowicz, P.R., Pérez, M.A.C., Castro, E.A., Cordeiro, M.N.D.S., González, M.P., Application of the replacement method as novel variable selection strategy in QSAR 1. Carcinogenic potential (2006) Chemometr. Intell. Lab., 81, pp. 180-187
  • So, S.S., Karplus, M., Evolutionary optimization in quantitative structure-activity relationship: an application of genetic neural networks (1996) J. Med. Chem., 39, pp. 1521-1530
  • HYPERCHEM, 6.03 (Hypercube), , http://www.hyper.com
  • e-Dragon, Electronic remote version of Dragon 5.4, <http://www.vcclab.org/lab/edragon/>; Todeschini, R., Consonni, V., (2000) Handbook of Molecular Descriptors, , Wiley, VCH, Weinheim, Germany
  • Matlab, 5.0 The MathWorks Inc, , http://www.mathworks.com
  • Draper, N.R., Smith, H., (1981) Applied Regression Analysis, , John Wiley & Sons, New York
  • Melanie, M., (1998) An Introduction to Genetic Algorithms Cambridge, Massachusetts, , A Bradford Book The MIT Press, London, England
  • Kubinyi, H., Variable selection in QSAR studies. I. An evolutionary algorithm (1994) Quant. Struct. Act Relat., 13, pp. 285-294
  • Kubinyi, H., Variable selection in QSAR studies. II. A highly efficient combination of systematic search and evolution (1994) Quant. Struct. Act Relat., 13, pp. 393-401
  • Mercader, A.G., Duchowicz, P.R., Fernández, F.M., Castro, E.A., Wolcan, E., QSPR study of solvent quenching of the 5D0 →7F2 emission of Eu(6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3, 5-octanedionate)3 (2008) Chem. Phys. Lett., 462, pp. 352-357
  • Hansch, C., (1990) Comprehensive Drug Design, , Pergamon Press, New York
  • Hawkins, D.M., Basak, S.C., Mills, D., Assessing model fit by cross validation (2003) J. Chem. Inf. Model., 43, pp. 579-586
  • Randic, M., (1991) J. Chem. Inf. Model., 31, pp. 311-320
  • Randic, M., (1991) New J. Chem., 15, pp. 517-525
  • Golbraikh, A., Tropsha, A., Beware of q2! (2002) J. Mol. Graphics Model., 20, pp. 269-276
  • Wold, S., Eriksson, L., (1995) Chemometrics Methods in Molecular Design, , VCH, Weinheim
  • Moreau, G., Broto, P., (1980) Nouv. J. Chim., 4, pp. 757-764
  • Moreau, G., Broto, P., (1980) Nouv. J. Chim., 4, pp. 359-360
  • Gasteiger, J., Sadowski, J., Schuur, J., Selzer, P., Steinhauer, L., Steinhauer, V., Chemical information in 3d space (1996) J. Chem. Inf. Comput. Sci., 36, pp. 1030-1037
  • Schuur, J.H., Selzer, P., Gasteiger, J., The coding of the three-dimensional structure of molecules by molecular transforms and its application to structure-spectra correlations and studies of biological activity (1996) J. Chem. Inf. Comput. Sci., 36, pp. 334-344
  • Todeschini, R., Gramatica, P., Sd-modelling and prediction by whim descriptors. Part 5. Theory development and chemical meaning of whim descriptors (1997) Quant. Struct.-Act. Relat., 16, pp. 113-119
  • Consonni, V., Todeschini, R., Pavan, M., Structure/response correlations and similarity/diversity analysis by getaway descriptors. 2. Application of the novel 3d molecular descriptors to QSAR/QSPR studies (2002) J. Chem. Inf. Model., 42, p. 693
  • Pari, K.C., Sundari, S., Chandani, S., Balasubramanian, D., β-carbolines that accumulate in human tissues may serve a protective role against oxidative stress* (2000) J. Biol. Chem., 275, pp. 2455-2462

Citas:

---------- APA ----------
Mercader, A.G., Duchowicz, P.R., Fernández, F.M., Castro, E.A., Cabrerizo, F.M. & Thomas, A.H. (2009) . Predictive modeling of the total deactivation rate constant of singlet oxygen by heterocyclic compounds. Journal of Molecular Graphics and Modelling, 28(1), 12-19.
http://dx.doi.org/10.1016/j.jmgm.2009.03.002
---------- CHICAGO ----------
Mercader, A.G., Duchowicz, P.R., Fernández, F.M., Castro, E.A., Cabrerizo, F.M., Thomas, A.H. "Predictive modeling of the total deactivation rate constant of singlet oxygen by heterocyclic compounds" . Journal of Molecular Graphics and Modelling 28, no. 1 (2009) : 12-19.
http://dx.doi.org/10.1016/j.jmgm.2009.03.002
---------- MLA ----------
Mercader, A.G., Duchowicz, P.R., Fernández, F.M., Castro, E.A., Cabrerizo, F.M., Thomas, A.H. "Predictive modeling of the total deactivation rate constant of singlet oxygen by heterocyclic compounds" . Journal of Molecular Graphics and Modelling, vol. 28, no. 1, 2009, pp. 12-19.
http://dx.doi.org/10.1016/j.jmgm.2009.03.002
---------- VANCOUVER ----------
Mercader, A.G., Duchowicz, P.R., Fernández, F.M., Castro, E.A., Cabrerizo, F.M., Thomas, A.H. Predictive modeling of the total deactivation rate constant of singlet oxygen by heterocyclic compounds. J. Mol. Graph. Model. 2009;28(1):12-19.
http://dx.doi.org/10.1016/j.jmgm.2009.03.002