Artículo

La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Chagas' disease, caused by the Trypanosoma cruzi parasite, is one of the largest public health problems in the Western hemisphere, with 16-18 million people infected, and approximately 100 million people at risk. Many efforts towards the development of targeted antiparasitic agents have recently been described. Of interest, bisphosphonates, pyrophosphate analogs in which the oxygen bridge between the two phosphorus atoms has been replaced by a carbon substituted with different side chains, are able to inhibit the growth of T. cruzi. The enzyme T. cruzi farnesyl pyrophosphate synthase (TcFPPS) involved in the mevalonate pathway, has been recently identified as the target of bisphosphonates. The protein has 362 amino acids and a molecular mass of 41.2 kDa. Several sequence motifs found in other FPPSs are present in TcFPPS. In this study we have modeled the structure of TcFPPS based on the structure of the avian FPPS. We have characterized the interaction with its substrates, isopentyl pyrophosphate and dimethylallyl pyrophosphate, and the mechanism of inhibition by the potent bisphosphonate risedronate (Ki of 0.032 ± 0.002 μM) by means of molecular dynamics techniques. We propose that homorisedronate, which has an extra methylene and a Ki of 8.17 ± 1.36 μM, does not form strong hydrogen bonds with TYR 211 and THR 208, which may be responsible for its lower activity as compared to risedronate. Moreover, we were able to reproduce the structural changes that occur upon the binding of the third Mg2+ to the active site of the protein. Taken together, our results provide a structural model for the design of novel inhibitors that may prove useful for the treatment of Chagas' disease. © 2006 Elsevier Inc. All rights reserved.

Registro:

Documento: Artículo
Título:Characterization of the farnesyl pyrophosphate synthase of Trypanosoma cruzi by homology modeling and molecular dynamics
Autor:Sigman, L.; Sánchez, V.M.; Turjanski, A.G.
Filiación:Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE, Facultad de Ciencias Exactas y Naturales, Pab. II, C1428EHA Buenos Aires, Argentina
Palabras clave:Bisphosphonates; Chagas' disease; Farnesyl pyrophosphate synthase; Homology modeling; Molecular dynamics; Carbon; Diseases; Hydrogen bonds; Molecular dynamics; Bisphosphonates; Chagas' disease; Farnesyl pyrophosphate synthase; Homology modeling; Enzymes; bisphosphonic acid derivative; dimethylallylpyrophosphate; geranyltransferase; isopentyl pyrophosphate; magnesium ion; pyrophosphoric acid derivative; risedronic acid; threonine; transferase inhibitor; tyrosine; unclassified drug; article; Chagas disease; chemical binding; chemical model; chemical structure; enzyme active site; enzyme activity; enzyme analysis; enzyme substrate; human; hydrogen bond; molecular dynamics; molecular interaction; molecular model; nonhuman; nucleotide sequence; priority journal; sequence homology; Trypanosoma cruzi; Amino Acid Sequence; Animals; Binding Sites; Geranyltranstransferase; Models, Molecular; Molecular Sequence Data; Molecular Structure; Sequence Homology, Amino Acid; Structural Homology, Protein; Structure-Activity Relationship; Trypanosoma cruzi; Aves; Trypanosoma cruzi
Año:2006
Volumen:25
Número:3
Página de inicio:345
Página de fin:352
DOI: http://dx.doi.org/10.1016/j.jmgm.2006.02.001
Título revista:Journal of Molecular Graphics and Modelling
Título revista abreviado:J. Mol. Graph. Model.
ISSN:10933263
CODEN:JMGMF
CAS:dimethylallylpyrophosphate, 358-72-5; geranyltransferase, 37277-79-5, 50812-36-7; magnesium ion, 22537-22-0; risedronic acid, 105462-24-6, 122458-82-6; threonine, 36676-50-3, 72-19-5; tyrosine, 16870-43-2, 55520-40-6, 60-18-4; Geranyltranstransferase, EC 2.5.1.10
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10933263_v25_n3_p345_Sigman

Referencias:

  • Urbina, J.A., Docampo, R., Specific chemotherapy of Chagas' disease: controversies and advances (2003) Trends Parasitol., 19, pp. 495-501
  • Miles, M.A., Feliciangeli, M.D., de Arias, A.R., American trypanosomiasis (Chagas' disease) and the role of molecular epidemiology in guiding control strategies (2003) BMJ, 326, pp. 1444-1448
  • Kirchhoff, L.V., American trypanosomiasis (Chagas' disease)-a tropical disease now in the United States (1993) N. Engl. J. Med., 329, pp. 639-644
  • Urbina, J.A., Moreno, B., Vierkotter, S., Oldfield, E., Payares, G., Sanoja, C., Bailey, B.N., Docampo, R., Trypanosoma cruzi contains major pyrophosphate stores, and its growth in vitro and in vivo is blocked by pyrophosphate analogs (1999) J. Biol. Chem., 274, pp. 33609-33615
  • Dunford, J.E., Thompson, K., Coxon, F.P., Luckman, S.P., Hahn, F.M., Poulter, C.D., Ebetino, F.H., Rogers, M.J., Structure-activity relationships for inhibition of farnesyl diphosphate synthase in vitro and inhibition of bone resorption in vivo by nitrogen-containing bisphosphonates (2001) J. Pharmacol. Exp. Ther., 296, pp. 235-242
  • Sanders, J.M., Song, Y., Chan, J.M., Zhang, Y., Jennings, S., Kosztowski, T., Odeh, S., Oldfield, E., Pyridinium-1-yl bisphosphonates are potent inhibitors of farnesyl diphosphate synthase and bone resorption (2005) J. Med. Chem., 48, pp. 2957-2963
  • Ling, Y., Sahota, G., Odeh, S., Chan, J.M., Araujo, F.G., Moreno, S.N., Oldfield, E., Bisphosphonate inhibitors of Toxoplasma gondi growth: in vitro, QSAR, and in vivo investigations (2005) J. Med. Chem., 48, pp. 3130-3140
  • Cheng, F., Oldfield, E., Inhibition of isoprene biosynthesis pathway enzymes by phosphonates, bisphosphonates, and diphosphates (2004) J. Med. Chem., 47, pp. 5149-5158
  • Hosfield, D.J., Zhang, Y., Dougan, D.R., Broun, A., Tari, L.W., Swanson, R.V., Finn, J., Structural basis for bisphosphonate-mediated inhibition of isoprenoid biosynthesis (2004) J. Biol. Chem., 279, pp. 8526-8529
  • Szajnman, S.H., Ravaschino, E.L., Docampo, R., Rodriguez, J.B., Synthesis and biological evaluation of 1-amino-1,1-bisphosphonates derived from fatty acids against Trypanosoma cruzi targeting farnesyl pyrophosphate synthase (2005) Bioorg. Med. Chem. Lett., 15, pp. 4685-4690
  • Montalvetti, A., Bailey, B.N., Martin, M.B., Severin, G.W., Oldfield, E., Docampo, R., Bisphosphonates are potent inhibitors of Trypanosoma cruzi farnesyl pyrophosphate synthase (2001) J. Biol. Chem., 276, pp. 33930-33937
  • van, B.E., Pieterman, E., Cohen, L., Lowik, C., Papapoulos, S., Farnesyl pyrophosphate synthase is the molecular target of nitrogen-containing bisphosphonates (1999) Biochem. Biophys. Res. Commun., 264, pp. 108-111
  • van, B.E., Pieterman, E., Cohen, L., Lowik, C., Papapoulos, S., Nitrogen-containing bisphosphonates inhibit isopentenyl pyrophosphate isomerase/farnesyl pyrophosphate synthase activity with relative potencies corresponding to their antiresorptive potencies in vitro and in vivo (1999) Biochem. Biophys. Res. Commun., 255, pp. 491-494
  • Ashby, M.N., Edwards, P.A., Identification and regulation of a rat liver cDNA encoding farnesyl pyrophosphate synthetase (1989) J. Biol. Chem., 264, pp. 635-640
  • Tarshis, L.C., Yan, M., Poulter, C.D., Sacchettini, J.C., Crystal structure of recombinant farnesyl diphosphate synthase at 2.6-A resolution (1994) Biochemistry, 33, pp. 10871-10877
  • Tarshis, L.C., Proteau, P.J., Kellogg, B.A., Sacchettini, J.C., Poulter, C.D., Regulation of product chain length by isoprenyl diphosphate synthases (1996) Proc. Natl. Acad. Sci. U.S.A., 93, pp. 15018-15023
  • Phan, R.M., Poulter, C.D., Synthesis of (S)-isoprenoid thiodiphosphates as substrates and inhibitors (2001) J. Org. Chem., 66, pp. 6705-6710
  • Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs (1997) Nucl. Acids Res., 25, pp. 3389-3402
  • Berman, H.M., Battistuz, T., Bhat, T.N., Bluhm, W.F., Bourne, P.E., Burkhardt, K., Feng, Z., Zardecki, C., The protein data bank (2002) Acta Crystallogr. D. Biol. Crystallogr., 58, pp. 899-907
  • Jeanmougin, F., Thompson, J.D., Gouy, M., Higgins, D.G., Gibson, T.J., Multiple sequence alignment with Clustal X (1998) Trends Biochem. Sci., 23, pp. 403-405
  • Peitsch, M.C., ProMod and Swiss-model: internet-based tools for automated comparative protein modelling (1996) Biochem. Soc. Trans., 24, pp. 274-279
  • Schwede, T., Kopp, J., Guex, N., Peitsch, M.C., SWISS-MODEL: an automated protein homology-modeling server (2003) Nucl. Acids Res., 31, pp. 3381-3385
  • Guex, N., Peitsch, M.C., SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling (1997) Electrophoresis, 18, pp. 2714-2723
  • Hooft, R.W., Vriend, G., Sander, C., Abola, E.E., Errors in protein structures (1996) Nature, 381, p. 272
  • Sippl, M.J., Calculation of conformational ensembles from potentials of mean force. An approach to the knowledge-based prediction of local structures in globular proteins (1990) J. Mol. Biol., 213, pp. 859-883
  • Wang, J.M., Cieplak, P., Kollman, P.A., How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? (2000) J. Comput. Chem., 21, pp. 1049-1074
  • Breneman, C.M., Wiberg, K.B., Determining atom-centered monopoles from molecular electrostatic potentials-the need for high sampling density in formamide conformational-analysis (1990) J. Comput. Chem., 11, pp. 361-373
  • Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz, K.M., Ferguson, D.M., Spellmeyer, D.C., Kollman, P.A., A 2nd generation force-field for the simulation of proteins, nucleic-acids, and organic-molecules (1995) J. Am. Chem. Soc., 117, pp. 5179-5197
  • Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., Klein, M.L., Comparison of simple potential functions for simulating liquid water (1983) J. Chem. Phys., 79, pp. 926-935
  • Ryckaert, J.P., Ciccotti, G., Berendsen, H.J.C., Numerical-integration of cartesian equations of motion of a system with constraints-molecular-dynamics of N-alkanes (1977) J. Comput. Phys., 23, pp. 327-341
  • Berendsen, H.J.C., Postma, J.P.M., Vangunsteren, W.F., Dinola, A., Haak, J.R., Molecular-dynamics with coupling to an external bath (1984) J. Chem. Phys., 81, pp. 3684-3690
  • Essmann, U., Perera, L., Berkowitz, M.L., Darden, T., Lee, H., Pedersen, L.G., A smooth particle mesh Ewald method (1995) J. Chem. Phys., 103, pp. 8577-8593
  • Tarshis, L.C., Proteau, P.J., Kellogg, B.A., Sacchettini, J.C., Poulter, C.D., Regulation of product chain length by isoprenyl diphosphate synthases (1996) Proc. Natl. Acad. Sci. U.S.A., 93, pp. 15018-15023
  • Szajnman, S.H., Montalvetti, A., Wang, Y., Docampo, R., Rodriguez, J.B., Bisphosphonates derived from fatty acids are potent inhibitors of Trypanosoma cruzi farnesyl pyrophosphate synthase (2003) Bioorg. Med. Chem. Lett., 13, pp. 3231-3235
  • Martin, M.B., Arnold, W., Heath III, H.T., Urbina, J.A., Oldfield, E., Nitrogen-containing bisphosphonates as carbocation transition state analogs for isoprenoid biosynthesis (1999) Biochem. Biophys. Res. Commun., 263, pp. 754-758

Citas:

---------- APA ----------
Sigman, L., Sánchez, V.M. & Turjanski, A.G. (2006) . Characterization of the farnesyl pyrophosphate synthase of Trypanosoma cruzi by homology modeling and molecular dynamics. Journal of Molecular Graphics and Modelling, 25(3), 345-352.
http://dx.doi.org/10.1016/j.jmgm.2006.02.001
---------- CHICAGO ----------
Sigman, L., Sánchez, V.M., Turjanski, A.G. "Characterization of the farnesyl pyrophosphate synthase of Trypanosoma cruzi by homology modeling and molecular dynamics" . Journal of Molecular Graphics and Modelling 25, no. 3 (2006) : 345-352.
http://dx.doi.org/10.1016/j.jmgm.2006.02.001
---------- MLA ----------
Sigman, L., Sánchez, V.M., Turjanski, A.G. "Characterization of the farnesyl pyrophosphate synthase of Trypanosoma cruzi by homology modeling and molecular dynamics" . Journal of Molecular Graphics and Modelling, vol. 25, no. 3, 2006, pp. 345-352.
http://dx.doi.org/10.1016/j.jmgm.2006.02.001
---------- VANCOUVER ----------
Sigman, L., Sánchez, V.M., Turjanski, A.G. Characterization of the farnesyl pyrophosphate synthase of Trypanosoma cruzi by homology modeling and molecular dynamics. J. Mol. Graph. Model. 2006;25(3):345-352.
http://dx.doi.org/10.1016/j.jmgm.2006.02.001