Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The trace of tensors that account for chiroptical response of the H2O2 molecule is a function of the HO-OH dihedral angle. It vanishes at 0° and 180°, due to the presence of molecular symmetry planes, but also for values in the range 90-100° of this angle, in which the molecule is unquestionably chiral. Such an atypical effect is caused by counterbalancing contributions of diagonal tensor components with nearly maximal magnitude but opposite sign, determined by electron flow in open or closed helical paths, and associated with induced electric and magnetic dipole moments and anapole moments. For values of dihedral angle external to the 90-100° interval, the helical paths become smaller in size, thus reducing the amount of cancellation among diagonal components. Shrinking of helical paths determines the appearance of extremum values of tensor traces approximately at 50° and 140° dihedral angles. © 2017 American Chemical Society.

Registro:

Documento: Artículo
Título:Electric Dipole-Magnetic Dipole Polarizability and Anapole Magnetizability of Hydrogen Peroxide as Functions of the HOOH Dihedral Angle
Autor:Pelloni, S.; Provasi, P.F.; Pagola, G.I.; Ferraro, M.B.; Lazzeretti, P.
Filiación:Polo Agroindustriale di Parma C/o I.T.I.S. Galileo Galilei, Via Martiri di Cefalonia 14, Parma, 43126, Italy
Departamento de Fĺsica, Northeastern University, Av. Libertad 5500, Corrientes, W3400, Argentina
Departamento de Fĺsica, Facultad de Ciencias Exactas y Naturales and IFIBA, CONICET, Universidad de Buenos Aires, Ciudad Universitari, Pab. I, Buenos Aires, 1428, Argentina
Istituto di Struttura della Materia, Consiglio Nazionale Delle Ricerche, Via del Fosso del Cavaliere 100, Rome, 00133, Italy
Palabras clave:Molecules; Stereochemistry; Tensors; Anapole moment; Electric dipole; Electron flow; Helical-path; Magnetic dipole; Molecular symmetry; Tensor components; Dihedral angle
Año:2017
Volumen:121
Número:48
Página de inicio:9369
Página de fin:9376
DOI: http://dx.doi.org/10.1021/acs.jpca.7b09104
Título revista:Journal of Physical Chemistry A
Título revista abreviado:J Phys Chem A
ISSN:10895639
CODEN:JPCAF
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10895639_v121_n48_p9369_Pelloni

Referencias:

  • Hougen, J.T., Classification of rotational energy levels for symmetric-top molecules (1962) J. Chem. Phys., 37 (7), pp. 1433-1441
  • Hougen, J.T., Classification of rotational energy levels. II (1963) J. Chem. Phys., 39 (2), pp. 358-365
  • Longuet-Higgins, H.C., The symmetry groups of non-rigid molecules (1963) Mol. Phys., 6 (6), pp. 445-460
  • Longuet-Higgins, H.C., The symmetry groups of non-rigid molecules (2002) Mol. Phys., 100 (1), pp. 11-20
  • Watson, J.K.G., On the symmetry groups of non-rigid molecules (1971) Mol. Phys., 21, pp. 577-585
  • Gilles, J.-M.F., Philippot, J., Internal symmetry groups of non-rigid molecules (1972) Int. J. Quantum Chem., 6, pp. 225-261
  • Russell, D.K., The symmetry groups of non-rigid molecules: A Lie algebraic and group contraction approach (1998) Mol. Phys., 93 (2), pp. 441-455
  • Watson, J.K.G., Simplification of the molecular vibration-rotation hamiltonian (2002) Mol. Phys., 100 (1), pp. 47-54
  • Hunt, R.H., Leacock, R.A., Peters, C.W., Hecht K, T., Internal rotation in hydrogen peroxide: The far-infrared spectrum and the determination of the hindering potential (1965) J. Chem. Phys., 42 (6), pp. 1931-1946
  • Koput, J., An ab initio study on the equilibrium structure and torsional potential energy function of hydrogen peroxide (1995) Chem. Phys. Lett., 236 (4), pp. 516-520
  • (2014), https://goldbook.iupac.org/pdf/goldbook.pdf, International Union of Pure and Applied Chemistry Compendium of Chemical Terminology Gold Book, Version 2.3.3,-02-24; Lazzeretti, P., Electric and magnetic properties of molecules (2003) Handbook of Molecular Physics and Quantum Chemistry, 3, pp. 53-145. , Wilson, S. John Wiley & Sons, Ltd. Chichester, Vol. Part 1, Chapter 3
  • Ligabue, A., Lazzeretti, P., Béccar Varela, M.P., Ferraro, M.B., On the resolution of the optical rotatory power of chiral molecules into atomic terms. A study of hydrogen peroxide (2002) J. Chem. Phys., 116 (15), pp. 6427-6434
  • Buckingham, A.D., Chirality in NMR spectroscopy (2004) Chem. Phys. Lett., 398, pp. 1-5
  • Lazzeretti, P., Zanasi, R., On the calculation of parity-violating energies in hydrogen peroxide and hydrogen disulphide molecules within the random-phase approximation (1997) Chem. Phys. Lett., 279, pp. 349-354
  • Hennum, A.C., Helgaker, T., Klopper, W., Parity-violating interaction in H2O2 calculated from density-functional theory (2002) Chem. Phys. Lett., 354 (34), pp. 274-282
  • Pericou-Cayere, M., Rerat, M., Dargelos, A., Theoretical treatment of the electronic circular dichroism spectrum and the optical rotatory power of H2S2 (1998) Chem. Phys., 226 (3), pp. 297-306
  • Provasi, P.F., Pagola, G.I., Ferraro, M.B., Pelloni, S., Lazzeretti, P., Magnetizabilities of diatomic and linear triatomic molecules in a time-independent nonuniform magnetic field (2014) J. Phys. Chem. A, 118, pp. 6333-6342
  • Tellgren, E.I., Fliegl, H., Non-perturbative treatment of molecules in linear magnetic fields: Calculation of anapole susceptibilities (2013) J. Chem. Phys., 139, p. 164118
  • Pagola, G.I., Ferraro, M.B., Provasi, P.F., Pelloni, S., Lazzeretti, P., Theoretical estimates of the anapole magnetizabilities of C4H4X2 cyclic molecules for X = O, S, Se, and Te (2014) J. Chem. Phys., 141 (9), p. 094305
  • Zarycz, N., Provasi, P.F., Pagola, G.I., Ferraro, M.B., Pelloni, S., Lazzeretti, P., Computational study of basis set and electron correlation effects on anapole magnetizabilities of chiral molecules (2016) J. Comput. Chem., 37, pp. 1552-1558
  • Lazzeretti, P., The abstract GPT and GCPT groups of discrete C, P and T symmetries (2017) J. Mol. Spectrosc., 337, pp. 178-184
  • Lazzeretti, P., Chiral discrimination in nuclear magnetic resonance spectroscopy (2017) J. Phys.: Condens. Matter, 29 (44), p. 443001
  • Lazzeretti, P., Magnetic properties of a molecule in non-uniform magnetic field (1993) Theor. Chim. Acta, 87 (1-2), pp. 59-73
  • Faglioni, F., Ligabue, A., Pelloni, S., Soncini, A., Lazzeretti, P., Molecular response to a time-independent non-uniform magnetic field (2004) Chem. Phys., 304, pp. 289-299
  • Condon, E.U., Theories of optical rotatory power (1937) Rev. Mod. Phys., 9, pp. 432-457
  • Buckingham, A.D., Malm, S.M., Asymmetry in the nuclear magnetic shielding tensor (1971) Mol. Phys., 22 (6), pp. 1127-1130
  • Robert, J.B., Wiesenfeld, L., Magnetic anisotropic interactions of nuclei in condensed matter (1982) Phys. Rep., 86, pp. 363-401
  • Buckingham, A.D., Pyykkö, P., Robert, J.B., Wiesenfeld, L., Symmetry rules for the indirect nuclear spin-spin coupling tensor revisited (1982) Mol. Phys., 46 (1), pp. 177-182
  • Andrew, E.R., Farnell, L.F., The effect of macroscopic rotation on anisotropic bilinear spin interactions in solids (1968) Mol. Phys., 15, p. 157
  • Buckingham, A.D., Love, J., Theory of the anisotropy of nuclear spin coupling (1970) J. Magn. Reson., 2, pp. 338-351
  • Schneider, R.F., Asymmetry in magnetic second-rank tensor quantities (1968) J. Chem. Phys., 48 (11), pp. 4905-4909
  • Spencer, A.J.M., (2004) Continuum Mechanics, p. 88. , Dover Books on Physics; Dover Publications
  • Tommasini, M., Longhi, G., Mazzeo, G., Abbate, S., Nieto-Ortega, B., Ramírez, F.J., Casado, J., López Navarrete, J.T., Mode robustness in Raman optical activity (2014) J. Chem. Theory Comput., 10 (12), pp. 5520-5527
  • Longhi, G., Tommasini, M., Abbate, S., Polavarapu, P.L., The connection between robustness angles and dissymmetry factors in vibrational circular dichroism spectra (2015) Chem. Phys. Lett., 639 (SUPPLEMENT C), pp. 320-325
  • Longhi, G., Tommasini, M., Abbate, S., Polavarapu, P.L., Corrigendum to "the connection between robustness angles and dissymmetry factors in vibrational circular dichroism spectra" [chem. Phys. Lett. 639 (2015) 320-325] (2016) Chem. Phys. Lett., 648 (SUPPLEMENT C), p. 208
  • Barron, L.D., (2004) Molecular Light Scattering and Optical Activity, , second ed. Cambridge University Press: Cambridge
  • Herzberg, G., (1956) Molecular Spectra and Molecular Structure II: Infrared and Raman of Polyatomic Molecules, p. 247. , first ed. Van Nostrand, Eq. III.20
  • Stone, A., (2013) The Theory of Intermolecular Forces, p. 27. , Oxford University Press, second ed
  • Weickert, J., Hagen, H., (2005) Visualization and Processing of Tensor Fields (Mathematics and Visualization, , first ed. Springer
  • Basser, P.J., Pierpaoli, C., Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI (1996) J. Magn. Reson., Ser. B, 111, pp. 209-219
  • Herges, R., Daniel, G., Delocalization of electrons in molecules (2001) J. Phys. Chem. A, 105, pp. 3214-3220
  • Flygare, W.H., Magnetic interactions in molecules and an analysis of molecular electronic charge distribution from magnetic parameters (1974) Chem. Rev., 74 (6), pp. 653-687
  • Becke, A.D., Density-functional termochemistry. III. the role of exact exchange (1993) J. Chem. Phys., 98 (7), pp. 5648-5652
  • Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A., Jr., Pople, J.A., (2004) Gaussian 2003, , Revision C.02; Gaussian, Inc. Wallingford, CT
  • (2005) DALTON, An Electronic Structure Program, , http://www.kjemi.uio.no/software/dalton/, Release 2.0
  • Jørgensen, P., Simons, J., (1981) Second Quantization-Based Method in Quantum Chemistry, , Academic Press: New York
  • Kauzmann, W., (1957) Quantum Chemistry-An Introduction, , Academic Press Inc. New York
  • Pelloni, S., Faglioni, F., Soncini, A., Ligabue, A., Lazzeretti, P., Magnetic response of dithiin molecules: Is there anti-aromaticity in nature? (2003) Chem. Phys. Lett., 375, pp. 583-590
  • Mohr, P.J., Newell, D.B., Taylor, B.N., CODATA recommended values of the fundamental physical constants: 2014 (2016) Rev. Mod. Phys., 88, p. 035009

Citas:

---------- APA ----------
Pelloni, S., Provasi, P.F., Pagola, G.I., Ferraro, M.B. & Lazzeretti, P. (2017) . Electric Dipole-Magnetic Dipole Polarizability and Anapole Magnetizability of Hydrogen Peroxide as Functions of the HOOH Dihedral Angle. Journal of Physical Chemistry A, 121(48), 9369-9376.
http://dx.doi.org/10.1021/acs.jpca.7b09104
---------- CHICAGO ----------
Pelloni, S., Provasi, P.F., Pagola, G.I., Ferraro, M.B., Lazzeretti, P. "Electric Dipole-Magnetic Dipole Polarizability and Anapole Magnetizability of Hydrogen Peroxide as Functions of the HOOH Dihedral Angle" . Journal of Physical Chemistry A 121, no. 48 (2017) : 9369-9376.
http://dx.doi.org/10.1021/acs.jpca.7b09104
---------- MLA ----------
Pelloni, S., Provasi, P.F., Pagola, G.I., Ferraro, M.B., Lazzeretti, P. "Electric Dipole-Magnetic Dipole Polarizability and Anapole Magnetizability of Hydrogen Peroxide as Functions of the HOOH Dihedral Angle" . Journal of Physical Chemistry A, vol. 121, no. 48, 2017, pp. 9369-9376.
http://dx.doi.org/10.1021/acs.jpca.7b09104
---------- VANCOUVER ----------
Pelloni, S., Provasi, P.F., Pagola, G.I., Ferraro, M.B., Lazzeretti, P. Electric Dipole-Magnetic Dipole Polarizability and Anapole Magnetizability of Hydrogen Peroxide as Functions of the HOOH Dihedral Angle. J Phys Chem A. 2017;121(48):9369-9376.
http://dx.doi.org/10.1021/acs.jpca.7b09104