Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We present molecular dynamics simulation results describing proton/deuteron exchange equilibria along hydrogen bonds at the vicinity of HX acids (X = F, I) in aqueous clusters at low temperatures. To allow for an adequate description of proton transfer processes, our simulation scheme resorted on the implementation of a multistate empirical valence bond hamiltonian coupled to a path integral scheme to account for effects derived from nuclear quantum fluctuations. We focused attention on clusters comprising a number of water molecules close to the threshold values necessary to stabilize contact-ion-pairs. For X = F, our results reveal a clear propensity of the heavy isotope to lie at the bond bridging the halide to the nearest water molecule. Contrasting, for X = I, the thermodynamic stability is reversed and the former connectivity is preferentially articulated via the light isotope. These trends remain valid for undissociated and ionic descriptions of the stable valence bond states. The preferences are rationalized in terms of differences in the quantum kinetic energies of the isotopes which, in turn, reflect the extent of the local spatial confinements prevailing along the different hydrogen bonds in the clusters. In most cases, these features are also clearly reflected in the characteristics of the corresponding stretching bands of the simulated infrared spectra. This opens interesting possibilities to gauge the extent of the isotopic thermodynamic stabilizations and the strengths of the different hydrogen bonds by following the magnitudes and shifts of the spectral signals in temperature-controlled experiments, performed on mixed clusters combining H2O and HOD. © 2016 American Chemical Society.

Registro:

Documento: Artículo
Título:Positional Isotope Exchange in HX·(H2O)n (X = F, I) Clusters at Low Temperatures
Autor:Litman, Y.E.; Videla, P.E.; Rodriguez, J.; Laria, D.
Filiación:Departamento de Química Inorgánica, Analítica y Química-Física, INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, Buenos Aires, 1428, Argentina
Departamento de Física de la Materia Condensada, Comisión Nacional de Energía Atómica, Avenida Libertador 8250, Buenos Aires, 1429, Argentina
ECyT, UNSAM, Martín de Irigoyen 3100, San Martín, Pcia. de Buenos Aires, 1650, Argentina
Palabras clave:Isotopes; Kinetic energy; Molecular dynamics; Molecules; Quantum electronics; Quantum theory; Temperature; Controlled experiment; Exchange equilibria; Molecular dynamics simulations; Proton transfer process; Quantum fluctuation; Spatial confinement; Thermodynamic stabilization; Valence-bond state; Hydrogen bonds
Año:2016
Volumen:120
Número:36
Página de inicio:7213
Página de fin:7224
DOI: http://dx.doi.org/10.1021/acs.jpca.6b06681
Título revista:Journal of Physical Chemistry A
Título revista abreviado:J Phys Chem A
ISSN:10895639
CODEN:JPCAF
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10895639_v120_n36_p7213_Litman

Referencias:

  • Dermota, T.E., Zhong, Q., Castleman, A.W., Jr., Ultrafast Dynamics in Cluster Systems (2004) Chem. Rev., 104, pp. 1861-1886
  • Young, R.M., Neumark, D.M., Dynamics of Solvated Electrons in Clusters (2012) Chem. Rev., 112, pp. 5553-5577
  • Leopold, K.R., Hydrated Acid Clusters (2011) Annu. Rev. Phys. Chem., 62, pp. 327-349
  • Buch, V., Bauerecker, S., Devlin, J.P., Buck, U., Kazimirski, J.K., Solid Water Clusters in the Size Range of Tens-Thousands of H2O: A Combined Computational/Spectroscopic Outlook (2004) Int. Rev. Phys. Chem., 23, pp. 375-433
  • Sanov, A., Lineberger, W.C., Cluster Anions: Structure, Interactions, and Dynamics in the Sub-Nanoscale Regime (2004) Phys. Chem. Chem. Phys., 6, pp. 2018-2032
  • Headrick, J.M., Diken, E.G., Walters, R.S., Hammer, N.I., Christie, R.A., Cui, J., Myshakin, E.M., Jordan, K.D., Spectral Signatures of Hydrated Proton Vibrations in Water Clusters (2005) Science, 308, pp. 1765-1769
  • Guasco, T.L., Johnson, M.A., McCoy, A.B., Unraveling Anharmonic Effects in the Vibration Predissociation Spectra of H5O 2 + and its Deuterated Analogues (2011) J. Phys. Chem. A, 115, pp. 5847-5858
  • Olesen, S.G., Guasco, T.L., Roscioli, J.R., Johnson, M.A., Tuning the Intermolecular Proton Bond in the H5O 2 + 'Zundel Ion' Scaffold (2011) Chem. Phys. Lett., 509, pp. 89-95
  • Fournier, J.A., Johnson, C.J., Wolke, C.T., Weddle, G.H., Wolk, A.B., Johnson, M.A., Vibrational Spectral Signature of the Proton Defect in the Three-Dimensional H+(H2O)21 Cluster (2014) Science, 344, pp. 1009-1012
  • Fournier, J.A., Wolke, C.T., Johnson, M.A., Odbadrakh, T.T., Jordan, K.D., Kathmann, S.M., Xantheas, S.S., Snapshots of Proton Accommodation at a Microscopic Water Surface: Understanding the Vibrational Spectral Signatures of the Charge Defect in Cryogenically Cooled H+(H2O)n = 2 - 28 Clusters (2015) J. Phys. Chem. A, 119, pp. 9425-9440
  • Thompson, W.H., Hynes, J.T., Frequency Shifts in the Hydrogen-Bonded OH Stretch in Halide-Water Clusters. The Importance of Charge Transfer (2000) J. Am. Chem. Soc., 122, pp. 6278-6286
  • Rheinecker, J.L., Bowman, J.M., The Calculated Infrared Spectrum of Cl-H2O Using a Full Dimensional Ab-initio Potential Surface and Dipole Moment Surface (2006) J. Chem. Phys., 124, p. 131102
  • Ayotte, P., Weddle, G.H., Kim, J., Johnson, M.A., Mass-Selected Matrix Isolation Infrared Spectroscopy of the I-·(H2O)2 Complex: Making and Breaking the Inter-Water Hydrogen-Bond (1998) Chem. Phys., 239, pp. 485-491
  • Baik, J., Kim, H., Majumdar, D., Kim, K.S., Structures, Energetics, and Spectra of Fluoride-Water Clusters F(HO),n = 1-6: Ab Initio Study (1999) J. Chem. Phys., 110, pp. 9116-9127
  • Ayotte, P., Nielsen, S.B., Weddle, G.H., Johnson, M.A., Xantheas, S.S., Spectroscopic Observation of Ion-Induced Water Dimer Dissociation in the X-·(H2O)2 (X= F, Cl, Br, I) Clusters (1999) J. Phys. Chem. A, 103, pp. 10665-10669
  • Ayotte, P., Kelley, J.A., Nielsen, S.B., Johnson, M.A., Vibrational Spectroscopy of the F-H2O Complex Via Argon Predissociation: Photoinduced, Intracluster Proton Transfer? (2000) Chem. Phys. Lett., 316, pp. 455-459
  • Horvath, S., McCoy, A.B., Roscioli, J.R., Johnson, M.A., Vibrational Induced Proton Transfer in F-(H2O) and F-(D2O) (2008) J. Phys. Chem. A, 112, pp. 12337-12344
  • Robertson, W.H., Johnson, M.A., Molecular Aspects of Halide Ion Hydration: The Cluster Approach (2003) Annu. Rev. Phys. Chem., 54, pp. 173-213
  • Ceriotti, M., Fang, W., Kusalik, P.G., McKenzie, R.H., Michaelides, A., Morales, M.A., Markland, T.E., Nuclear Quantum Effects in Water and Aqueous Systems: Experiment, Theory and Current Challenges (2016) Chem. Rev., 116, pp. 7529-7550
  • Videla, P.E., Rossky, P.J., Laria, D., Nuclear Quantum Effects on the Structure and the Dynamics of [H2O]8 at Low Temperatures (2013) J. Chem. Phys., 139, p. 174315
  • Cheng, B., Ceriotti, M., Direct Path Integral Estimators for Isotope Fractionation Ratios (2014) J. Chem. Phys., 141, p. 244112
  • Marsalek, O., Chen, P.Y., Dupuis, R., Benoit, M., Méheut, M., Bacić, Z., Tuckerman, M.E., Efficient Calculation of Free Energy Differences Associated with Isotopic Substitution Using Path-Integral Molecular Dynamics (2014) J. Chem. Theory Comput., 10, pp. 1440-1453
  • Diken, E.G., Shin, J.-W., Price, E.A., Johnson, M.A., Isotopic Fractionation and Zero-Point Effects in Anionic H-Bonded Complexes: A Comparison of the I-·HDO and F-·HDO Ion-Molecule Clusters (2004) Chem. Phys. Lett., 387, pp. 17-22
  • Videla, P.E., Rossky, P.J., Laria, D., Isotopic Preferential Solvation of I- in Low-Temperature Water Nanoclusters (2015) J. Phys. Chem. B, 119, pp. 11783-11790
  • McCunn, L.R., Roscioli, J.R., Elliott, B.M., Johnson, M.A., McCoy, A.B., Why Does Argon Bind to Deuterium? Isotope Effects and Structures of Ar·(H5O) 5 + Complexes (2008) J. Phys. Chem. A, 112, pp. 6074-6078
  • Wilkins, D.M., Manolopoulos, D.E., Dang, L.X., Nuclear Quantum Effects in Water Exchange around Lithium and Fluoride Ions (2015) J. Chem. Phys., 142, p. 064509
  • Warshel, A., Weiss, R.M., An Empirical Valence Bond Approach for Comparing Reactions in Solutions and in Enzymes (1981) Ann. N. Y. Acad. Sci., 367, pp. 370-382
  • Walewski, L., Forbert, H., Marx, D., Quantum Induced Bond Centering in Microsolvated HCl: Solvent Separated versus Contact Ion Pairs (2011) J. Phys. Chem. Lett., 2, pp. 3069-3074
  • Forbert, H., Masia, M., Kaczmarek-Kedziera, A., Nair, N.N., Marx, D., Aggregation-induced Chemical Reactions: Acid Dissociation in Growing Water Clusters (2011) J. Am. Chem. Soc., 133, pp. 4062-4072
  • Masia, M., Forbert, H., Marx, D., Connecting Structure to Infrared Spectra of Molecular and Autodissociated HCl-Water Aggregates (2007) J. Phys. Chem. A, 111, pp. 12181-12191
  • Gutberlet, A., Schwaab, G., Birer, Ö., Masia, M., Kaczmarek, A., Forbert, H., Havenith, M., Marx, D., Aggregation-Induced Dissociation of HCl(H2O)4 below 1 K: The Smallest Droplet of Acid (2009) Science, 324, pp. 1545-1548
  • Lin, W., Paesani, F., Infrared Spectra of HCl(H2O)n Clusters from Semiempirical Born-Oppenheimer Molecular Dynamics Simulations (2015) J. Phys. Chem. A, 119, pp. 4450-4456
  • Ndongmouo, U.F.T., Lee, M.S., Rousseau, R., Baletto, F., Scandolo, S., Finite-Temperature Effects on the Stability and Infrared Spectra of HCl(H2O)6 Clusters (2007) J. Phys. Chem. A, 111, pp. 12810-12815
  • Mancini, J.S., Bowman, J.M., Effects of Zero-Point Delocalization on the Vibrational Frequencies of Mixed HCl and Water Clusters (2014) J. Phys. Chem. Lett., 5, pp. 2247-2253
  • Weimann, M., Fárník, M., Suhm, M.A., A First Glimpse at the Acidic Proton Vibrations in HCl-water Clusters via Supersonic Jet FTIR Spectroscopy (2002) Phys. Chem. Chem. Phys., 4, pp. 3933-3937
  • Huneycutt, A.J., Stickland, R.J., Hellberg, F., Saykally, R.J., Infrared Cavity Ringdown Spectroscopy of Acid-Water Clusters: HCl-H2O, DCl-D2O and DCl-(D2O)2 (2003) J. Chem. Phys., 118, pp. 1221-1229
  • Fárník, M., Weimann, M., Suhm, M., A Comparative Jet Fourier Transform Infrared Study of Small HCL and HBr-Solvent Complexes (2003) J. Chem. Phys., 118, pp. 10120-10136
  • Skvortsov, D., Lee, S.J., Vilesov, M.Y., Choi, M.Y., Hydrated HCl Clusters, HCl(H2O)1-3 in Helium Nanodroplets: Studies of Free OH Vibrational Stretching Modes (2009) J. Phys. Chem. A, 113, pp. 7360-7365
  • Craig, I.R., Manolopoulos, D.E., Quantum Statistics and Classical Mechanics: Real Time Correlation Functions from Ring Polymer Molecular Dynamics (2004) J. Chem. Phys., 121, pp. 3368-3373
  • Habershon, S., Manolopoulos, D.E., Markland, T.E., Miller, T.F., III, Ring-Polymer Molecular Dynamics: Quantum Effects in Chemical Dynamics from Classical Trajectories in an Extended Phase Space (2013) Annu. Rev. Phys. Chem., 64, p. 387
  • Feynman, R.P., Hibbs, A.R., (1965) Quantum Mechanics and Path Integrals, , McGraw-Hill: New York
  • Voth, G.A., Computer Simulation of Proton Solvation and Transport in Aqueous and Biomolecular systems (2006) Acc. Chem. Res., 39, pp. 143-150
  • Čuma, M., Schmitt, U.W., Voth, G.A., A Multi-State Empirical Valence Bond Model for Acid-Base Chemistry in Aqueous Solutions (2000) Chem. Phys., 258, pp. 187-199
  • Čuma, M., Schmitt, U.W., Voth, G.A., A Multi-State Empirical Valence Bond Model for Weak Acid Dissociation in Aqueous Solution (2001) J. Phys. Chem. A, 105, pp. 2814-2823
  • Wang, F., Izvekov, S., Voth, G.A., Unusual Amphiphilic Association of Hydrated Protons in Strong Acid Solution (2008) J. Am. Chem. Soc., 130, pp. 3120-3126
  • Vuilleumier, R., Borgis, D., (1998) Classical and Quantum Dynamics in Condensed Phase Simulations, , Berne, B. J. Ciccotti, G. Coker, D. F. World Scientific: Singapore, Chapter 30
  • Joutsuka, T., Ando, K., Hydration Structure in Dilute Hydrofluoric Acid (2011) J. Phys. Chem. A, 115, pp. 671-677
  • Videla, P.E., Rossky, P.J., Laria, D., Isotopic Effects on Tunneling Motions in the Water Trimer (2016) J. Chem. Phys., 144, p. 061101
  • Maupin, C.M., Wong, K.F., Soudackov, A.V., Kim, S., Voth, G.A., A Multistate Empirical Valence Bond Description of Protonable Amino Acids (2006) J. Phys. Chem. A, 110, pp. 631-639
  • Park, K., Lin, W., Paesani, F., A Refined MS-EVB Model for Proton Transport in Aqueous Environments (2012) J. Phys. Chem. B, 116, pp. 343-352
  • Perera, L., Berkowitz, M.L., Many Body Effects in Molecular Dynamics Simulations of Na+(H2O)n and Cl-(H2O)n Clusters (1991) J. Chem. Phys., 95, pp. 1954-1963
  • Carignano, M.A., Karlström, G., Linse, P., Polarizable Ions in Polarizable Water: A Molecular Dynamics Study (1997) J. Phys. Chem. B, 101, pp. 1142-1147
  • Stuart, S.J., Berne, B.J., Effects of Polarizability on the Hydration of the Chloride Ion (1996) J. Phys. Chem., 100, pp. 11934-11943
  • Dang, L.X., Characterization of Water Octamer, Nanomer, Decamer, and Iodide Water Interactions using Molecular Dynamics Techniques (1999) J. Chem. Phys., 110, pp. 1526-1532
  • Yoo, S., Lei, Y.A., Zeng, X.C., Effect of Polarizability of Halide Anions on the Ionic Solvation in Water Clusters (2003) J. Chem. Phys., 119, pp. 6083-6091
  • Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A., Jr., Burant, J.C., (2004) Gaussian 03, , revision C.02. Gaussian, Inc. Wallingford, CT
  • Peterson, K.A., Shepler, B.C., Figgen, D., Stoll, H., On the Spectroscopic and Thermochemical Properties of ClO, BrO, IO, and their Anions (2006) J. Phys. Chem. A, 110, pp. 13877-13883
  • Maroulis, G., Is the Dipole Polarizability of Hydrogen Iodide Accurately Known? (2000) Chem. Phys. Lett., 318, pp. 181-189
  • Archontis, G., Leontidis, E., Andreou, G., Attraction of Iodide Ions by the Free Water Surface, Revealed by Simulations with a Polarizable Force Field based on Drude Oscillations (2005) J. Phys. Chem. B, 109, pp. 17957-17966
  • Tuckerman, M.E., (2010) Statistical Mechanics: Theory and Molecular Simulation, , Oxford University Press, Chapter 10
  • Feynman, R.P., Forces in Molecules (1939) Phys. Rev., 56, pp. 340-343
  • Habershon, S., Fanourgakis, G.S., Manolopoulos, D.E., Comparison of Path Integral Molecular Dynamics Methods for the Infrared Absorption Spectrum of Liquid Water (2008) J. Chem. Phys., 129, p. 074501
  • Tuckerman, M., Berne, B.J., Martyna, G.J., Reversible Multiple Time Scale Molecular Dynamics (1992) J. Chem. Phys., 97, pp. 1990-2001
  • Ceriotti, M., Parrinello, M., Markland, T.E., Manolopoulos, D.E., Efficient Stochastic Thermostatting of Path Integral Molecular Dynamics (2010) J. Chem. Phys., 133, p. 124104
  • Re, S., Enhanced Stability of Non-Proton-Transferred Clusters of Hydrated Hydrogen Fluoride HF(H2O)n (n = 1 - 7): A Molecular Orbital Study (2001) J. Phys. Chem. A, 105, pp. 9725-9735
  • Odde, S., Mhin, B.J., Lee, S., Lee, H.M., Kim, K.S., Dissociation Chemistry of Hydrogen Halides in Water (2004) J. Chem. Phys., 120, pp. 9524-9535
  • Odde, S., Mhin, B.J., Lee, K.W., Lee, H.M., Tarakeshwar, P., Kim, K.S., Hydration and Dissociation of Hydrogen Fluoric Acid (HF) (2006) J. Phys. Chem. A, 110, pp. 7918-7924
  • Xie, Z.Z., Ong, Y.S., Kuo, J.L., On the Effects of Basis-Set in Studying the Hydration and Dissociation of HF in Cubic HF(H2O)7 Clusters (2008) Chem. Phys. Lett., 453, pp. 13-17
  • Cabaleiro-Lago, E.M., Hermida-Ramón, J.M., Rodriguez-Otero, J., Computational Study of the Dissociation of H-X Acids (X = F, Cl, Br, I) in Water Clusters (2002) J. Chem. Phys., 117, pp. 3160-3168
  • Elena, A.M., Meloni, S., Ciccotti, G., Equilibrium and Rate Constants, and Reaction Mechanism of the HF Dissociation in the HF(H2O)7 Cluster by Ab Initio Rare Event Simulation (2013) J. Phys. Chem. A, 117, pp. 13039-13050
  • Ando, K., Hynes, J.T., HF Acid Dissociation in Water: The First Step (1995) Faraday Discuss., 102, pp. 435-441
  • Ando, K., Hynes, J.T., Molecular Mechanism of HF Acid Ionization in Water: An Electronic Structure-Monte Carlo Study (1999) J. Phys. Chem. A, 103, pp. 10398-10408
  • Vaniček, J., Miller, W.H., Efficient Estimators for Quantum Instanton Evaluation of the Kinetic Isotope Effects: Application to the Intramolecular Hydrogen Transfer in Pentadiene (2007) J. Chem. Phys., 127, p. 114309
  • Ceriotti, M., Markland, T.E., Efficient Methods and Practical Guidelines for Simulating Isotope Effects (2013) J. Chem. Phys., 138, p. 014112
  • Liu, J., Andino, R.S., Miller, C.M., Chen, X., Wilkins, D.M., Ceriotti, M., Manolopoulos, D.E., A Surface-Specific Isotope Effect in Mixture of Light and Heavy Water (2013) J. Phys. Chem. C, 117, pp. 2944-2951
  • Videla, P.E., Rossky, P.J., Laria, D., Surface Isotope Segregation as a Probe of Temperature in Water Nanoclusters (2014) J. Phys. Chem. Lett., 5, pp. 2375-2379
  • Pinilla, C., Blanchard, M., Balan, E., Ferlat, G., Vuilleumier, R., Mauri, F., Equilibrium Fractionation of H and O Isotopes in Water from Path Integral Molecular Dynamics (2014) Geochim. Cosmochim. Acta, 135, pp. 203-216
  • Vuilleumier, R., (1998) Transport et Spectroscopie du Proton en Solution Aqueuse: Une Étude de Dynamique Moléculaire, , See, for example, Ph.D. Thesis, University of Paris VI
  • Witt, A., Ivanov, S.D., Shiga, M., Forbert, H., Marx, D., On the Applicability of Centroids and Ring Polymer Path Integral Molecular Dynamics for Vibrational Spectroscopy (2009) J. Chem. Phys., 130, p. 194510
  • Rossi, M., Ceriotti, M., Manolopoulos, D.E., How to Remove the Spurious Resonances from Ring Polymer Dynamics (2014) J. Chem. Phys., 140, p. 234116
  • Markland, T.E., Berne, B.J., Unraveling Quantum Mechanical Effects in Water using Isotopic Fractionation (2012) Proc. Natl. Acad. Sci. U. S. A., 109, pp. 7988-7991

Citas:

---------- APA ----------
Litman, Y.E., Videla, P.E., Rodriguez, J. & Laria, D. (2016) . Positional Isotope Exchange in HX·(H2O)n (X = F, I) Clusters at Low Temperatures. Journal of Physical Chemistry A, 120(36), 7213-7224.
http://dx.doi.org/10.1021/acs.jpca.6b06681
---------- CHICAGO ----------
Litman, Y.E., Videla, P.E., Rodriguez, J., Laria, D. "Positional Isotope Exchange in HX·(H2O)n (X = F, I) Clusters at Low Temperatures" . Journal of Physical Chemistry A 120, no. 36 (2016) : 7213-7224.
http://dx.doi.org/10.1021/acs.jpca.6b06681
---------- MLA ----------
Litman, Y.E., Videla, P.E., Rodriguez, J., Laria, D. "Positional Isotope Exchange in HX·(H2O)n (X = F, I) Clusters at Low Temperatures" . Journal of Physical Chemistry A, vol. 120, no. 36, 2016, pp. 7213-7224.
http://dx.doi.org/10.1021/acs.jpca.6b06681
---------- VANCOUVER ----------
Litman, Y.E., Videla, P.E., Rodriguez, J., Laria, D. Positional Isotope Exchange in HX·(H2O)n (X = F, I) Clusters at Low Temperatures. J Phys Chem A. 2016;120(36):7213-7224.
http://dx.doi.org/10.1021/acs.jpca.6b06681