Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Myoglobin (Mb) and hemoglobin have the biological ability to carry/store oxygen (O2), a property which requires its heme iron atom to be in the ferrous -Fe(II)- state. However, the thermodynamically stable state in the presence of O2 is Fe(III) and thus the oxidation rate of a globin is a critical parameter related to its function. Mb has been extensively studied and many mutants have been characterized regarding its oxygen mediated oxidation (i.e., autoxidation) rates. Site directed mutants in residues 29 (B10), which shapes the distal cavity, and 64 (E7), the well-known histidine gate, have been shown to display a wide range of autoxidation rate constants. In this work, we have thoroughly studied the mechanism underlying the autoxidation process by means of state-of-the-art computer simulation methodologies, using Mb and site directed mutants as benchmark cases. Our results explain the observed autoxidation rate tendencies in different variants of Mb, L29F < wt < L29A = H64Q < H64F < H64A, and shed light on several aspects of the reaction at the atomic level. First, water access to the distal pocket is a key event and the observed acid catalysis relies on HisE7 protonation and opening of the His gate to allow water access, rather than protonation of the oxy heme itself. Our results also suggest that the basic mechanism, i.e., superoxide displacement by hydroxide anion, is energetically more feasible. Finally, we confirmed that distal hydrogen bonds protect the oxy complex from autoxidation. © 2015 American Chemical Society.

Registro:

Documento: Artículo
Título:Molecular mechanism of myoglobin autoxidation: Insights from computer simulations
Autor:Arcon, J.P.; Rosi, P.; Petruk, A.A.; Marti, M.A.; Estrin, D.A.
Filiación:Departamento de Quimica Inorganica, Analitica y Quimica Fisica e INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, C1428EHA, Argentina
Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, C1428EHA, Argentina
Palabras clave:Amino acids; Hemoglobin; Hydrogen bonds; Iron compounds; Oxygen; Porphyrins; Protonation; Rate constants; Acid catalysis; Basic mechanism; Hydroxide anions; Molecular mechanism; Oxidation rates; Simulation methodology; State of the art; Thermodynamically stable; Oxidation; heme; myoglobin; oxygen; catalysis; chemistry; computer simulation; genetics; hydrogen bond; metabolism; molecular dynamics; mutation; oxidation reduction reaction; quantum theory; thermodynamics; Catalysis; Computer Simulation; Heme; Hydrogen Bonding; Molecular Dynamics Simulation; Mutation; Myoglobin; Oxidation-Reduction; Oxygen; Quantum Theory; Thermodynamics
Año:2015
Volumen:119
Número:5
Página de inicio:1802
Página de fin:1813
DOI: http://dx.doi.org/10.1021/jp5093948
Título revista:Journal of Physical Chemistry A
Título revista abreviado:J Phys Chem A
ISSN:10895639
CODEN:JPCAF
CAS:heme, 14875-96-8; oxygen, 7782-44-7; Heme; Myoglobin; Oxygen
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10895639_v119_n5_p1802_Arcon

Referencias:

  • Wittenberg, J.B., Wittenberg, B.A., Myoglobin Function Reassessed (2003) J. Exp. Biol., 206 (12), pp. 2011-2020
  • Sugawara, Y., Shikama, K., Autoxidation of Native Oxymyoglobin. Thermodynamic Analysis of the pH Profile (1980) Eur. J. Biochem., 110 (1), pp. 241-246
  • Brantley, R.E., Jr., Smerdon, S.J., Wilkinson, A.J., Singleton, E.W., Olson, J.S., The Mechanism of Autooxidation of Myoglobin (1993) J. Biol. Chem., 268 (10), pp. 6995-7010
  • Zhu, X., Zuo, L.X., Characterization of Oxygen Radical Formation Mechanism at Early Cardiac Ischemia (2013) Cell Death Dis., 4, p. 787
  • George, P., Stratmann, C.J., The Oxidation of Myoglobin to Metmyoglobin by Oxygen. i (1952) Biochem. J., 51 (1), pp. 103-108
  • Smagghe, B.J., Hoy, J.A., Percifield, R., Kundu, S., Hargrove, M.S., Sarath, G., Hilbert, J.-L., Peacock, W.J., Review: Correlations between Oxygen Affinity and Sequence Classifications of Plant Hemoglobins (2009) Biopolymers, 91 (12), pp. 1083-1096
  • Olson, J.S., Maillet, D.H., Designing Recombinant Hemoglobin for Use as a Blood Substitute (2006) Blood Substitutes, pp. 354-374. , Winslow, R. M. Ed; Academic Press, Elsevier: Amsterdam
  • Kamimura, S., Matsuoka, A., Imai, K., Shikama, K., The Swinging Movement of the Distal Histidine Residue and the Autoxidation Reaction for Midge Larval Hemoglobins (2003) Eur. J. Biochem., 270 (7), pp. 1424-1433
  • Shikama, K., Matsuoka, A., Aplysia Myoglobin with Unusual Properties: Another Prototype in Myoglobin and Haemoglobin Biochemistry (1994) Biol. Rev. Cambridge Philos. Soc., 69 (2), pp. 233-251
  • Tsubamoto, Y., Matsuoka, A., Yusa, K., Shikama, K., Protozoan Myoglobin from Paramecium caudatum. Its Autoxidation Reaction and Hemichrome Formation (1990) Eur. J. Biochem., 193 (1), pp. 55-59
  • Shikama, K., The Molecular Mechanism of Autoxidation for Myoglobin and Hemoglobin: A Venerable Puzzle (1998) Chem. Rev., 98 (4), pp. 1357-1373
  • Shikama, K., Nature of the FeO2 Bonding in Myoglobin and Hemoglobin: A New Molecular Paradigm (2006) Prog. Biophys. Mol. Biol., 91 (12), pp. 83-162
  • Carver, T.E., Brantley, R.E., Jr., Singleton, E.W., Arduini, R.M., Quillin, M.L., Phillips, G.N., Jr., Olson, J.S., A Novel Site-Directed Mutant of Myoglobin with an Unusually High O2 Affinity and Low Autooxidation rate (1992) J. Biol. Chem., 267 (20), pp. 14443-14450
  • Springer, B.A., Sligar, S.G., Olson, J.S., Phillips, G.N., Jr., Mechanisms of Ligand Recognition in Myoglobin (1994) Chem. Rev., 94 (3), pp. 699-714
  • Cohen, I.A., Caughey, W.S., Substituted Deuteroporphyrins. IV. on the Kinetics and Mechanism of Reactions of Iron(II) Porphyrins with Oxygen (1968) Biochemistry, 7 (2), pp. 636-641
  • Ladner, R.C., Heidner, E.J., Perutz, M.F., The Structure of Horse Methaemoglobin at 2.0 Å Resolution (1977) J. Mol. Biol., 114 (3), pp. 385-413
  • Satoh, Y., Shikama, K., Autoxidation of Oxymyoglobin. A Nucleophilic Displacement Mechanism (1981) J. Biol. Chem., 256 (20), pp. 10272-10275
  • Case, D.A., Cheatham, T.E., III, Darden, T., Gohlke, H., Luo, R., Merz, K.M., Jr., Onufriev, A., Woods, R.J., The Amber Biomolecular Simulation Programs (2005) J. Comput. Chem., 26 (16), pp. 1668-1688
  • Martí, M.A., Crespo, A., Capece, L., Boechi, L., Bikiel, D.E., Scherlis, D.A., Estrin, D.A., Dioxygen Affinity in Heme Proteins Investigated by Computer Simulation (2006) J. Inorg. Biochem., 100 (4), pp. 761-770
  • Onufriev, A., Bashford, D., Case, D.A., Modification of the Generalized Born Model Suitable for Macromolecules (2000) J. Phys. Chem. B, 104 (15), pp. 3712-3720
  • Mongan, J., Case, D.A., McCammon, J.A., Constant pH Molecular Dynamics in Generalized Born Implicit Solvent (2004) J. Comput. Chem., 25 (16), pp. 2038-2048
  • Di Russo, N.V., Estrin, D.A., Martí, M.A., Roitberg, A.E., PH-dependent Conformational Changes in Proteins and Their Effect on Experimental pKas: The Case of Nitrophorin 4 (2012) PLoS Comput. Biol., 8 (11), p. 1002761
  • Humphrey, W., Dalke, A., Schulten, K., VMD: Visual Molecular Dynamics (1996) J. Mol. Graph., 14 (1), pp. 33-38
  • Crespo, A., Scherlis, D.A., Martí, M.A., Ordejón, P., Roitberg, A.E., Estrin, D.A., A DFT-based QM-MM Approach Designed for the Treatment of Large Molecular Systems: Application to Chorismate Mutase (2003) J. Phys. Chem. B, 107 (49), pp. 13728-13736
  • Perdew, J.P., Burke, K., Ernzerhof, M., Generalized Gradient Approximation Made Simple (1996) Phys. Rev. Lett., 77 (18), pp. 3865-3868
  • Capece, L., Boechi, L., Perissinotti, L.L., Arroyo-Mañez, P., Bikiel, D.E., Smulevich, G., Marti, M.A., Estrin, D.A., Small Ligand-globin Interactions: Reviewing Lessons Derived from Computer Simulation (2013) Biochim. Biophys. Acta, 1834 (9), pp. 1722-1738
  • Bikiel, D.E., Boechi, L., Capece, L., Crespo, A., De Biase, P.M., Di Lella, S., González Lebrero, M.C., Perisinotti, L.L., Modeling Heme Proteins Using Atomistic Simulations (2006) Phys. Chem. Chem. Phys., 8 (48), pp. 5611-5628
  • Perissinotti, L.L., Marti, M.A., Doctorovich, F., Luque, F.J., Estrin, D.A., A Microscopic Study of the Deoxyhemoglobin-catalyzed Generation of Nitric Oxide from Nitrite Anion (2008) Biochemistry, 47 (37), pp. 9793-9802
  • Petruk, A.A., Vergara, A., Estrin, D., Merlino, A., Molecular Basis of the NO Trans Influence in Quaternary T-state Human Hemoglobin: A Computational Study (2013) FEBS Lett., 587 (15), pp. 2393-2398
  • Bielski, B.H.J., Cabelli, D.E., Arudi, R.L., Ross, A.B., Reactivity of HO2/O2 - Radicals in Aqueous Solution (1985) J. Phys. Chem. Ref. Data., 14 (4), pp. 1041-1100
  • Ostermann, A., Tanaka, I., Engler, N., Niimura, N., Parak, F.G., Hydrogen and Deuterium in Myoglobin as Seen by a Neutron Structure Determination at 1.5 Å Resolution (2002) Biophys Chem., 95 (3), pp. 183-193
  • Hersleth, H., Dalhus, B., Görbitz, C.H., Andersson, K.K., An Iron Hydroxide Moiety in the 1.35 Å Resolution Structure of Hydrogen Peroxide Derived Myoglobin Compound II at pH 5.2 (2002) J. Biol. Inorg. Chem., 7 (3), pp. 299-304
  • Jee, J.E., Van Eldik, R., Mechanistic Studies on the Nitrite-catalyzed Reductive Nitrosylation of Highly Charged Anionic and Cationic FeIII Porphyrin Complexes (2006) Inorg. Chem., 45 (16), pp. 6523-6534
  • Rovira, C., Kunc, K., Hutter, J., Ballone, P., Parrinello, M., Equilibrium Geometries and Electronic Structure of Iron-Porphyrin Complexes: A Density Functional Study (1997) J. Phys. Chem. A, 101, pp. 8914-8925
  • Crespo, A., Marti, M.A., Kalko, S.G., Morreale, A., Orozco, M., Gelpi, J.L., Luque, J., Estrin, D.A., Theoretical Study of the Truncated Hemoglobin HbN: Exploring the Molecular Basis of the NO Detoxification Mechanism (2005) J. Am. Chem. Soc., 127, pp. 4433-4444
  • Perutz, M.F., Mathews, F.S., An X-ray Study of Azide Methaemoglobin (1966) J. Mol. Biol., 21 (1), pp. 199-202
  • Boechi, L., Arrar, M., Martí, M.A., Olson, J.S., Roitberg, A.E., Estrin, D.A., Hydrophobic Effect Drives Oxygen Uptake in Myoglobin via Histidine E7 (2013) J. Biol. Chem., 288 (9), pp. 6754-6762
  • Vojtěchovský, J., Chu, K., Berendzen, J., Sweet, R.M., Schlichting, I., Crystal Structures of Myoglobin-ligand Complexes at Near-atomic Resolution (1999) Biophys. J., 77 (4), pp. 2153-2174
  • Scott, E.E., Gibson, Q.H., Olson, J.S., Mapping the Pathways for O2 Entry into and Exit from Myoglobin (2001) J. Biol. Chem., 276 (7), pp. 5177-5188
  • Goldbeck, R.A., Bhaskaran, S., Ortega, C., Mendoza, J.L., Olson, J.S., Soman, J., Kliger, D.S., Esquerra, R.M., Water and Ligand Entry in Myoglobin: Assessing the Speed and Extent of Heme Pocket Hydration after CO Photodissociation (2006) Proc. Natl. Acad. Sci. U.S.A., 103 (5), pp. 1254-1259
  • Arroyo-Mañez, P., Bikiel, D.E., Boechi, L., Capece, L., Di Lella, S., Estrin, D.A., Marti, M.A., Petruk, A.A., Protein Dynamics and Ligand Migration Interplay as Studied by Computer Simulation (2011) Biochim. Biophys. Acta, 1814 (8), pp. 1054-1064
  • Martí, M.A., Capece, L., Bikiel, D.E., Falcone, B., Estrin, D.A., Oxygen Affinity Controlled by Dynamical Distal Conformations: The Soybean Leghemoglobin and the Paramecium caudatum Hemoglobin Cases (2007) Proteins: Struct., Funct., Genet., 68 (2), pp. 480-487
  • Arroyo-Mañez, P., Lu, C., Boechi, L., Martí, M.A., Shepherd, M., Wilson, J.L., Poole, R.K., Estrin, D.A., Role of the Distal Hydrogen-bonding Network in Regulating Oxygen Affinity in the Truncated Hemoglobin III from Campylobacter jejuni (2011) Biochemistry, 50 (19), pp. 3946-3956
  • Shikama, K., Autoxidation of Oxymyoglobin: A Meeting Point of the Stabilization and the Activation of Molecular Oxygen (1990) Biol. Rev. Camb. Philos. Soc., 65 (4), pp. 517-527
  • Shikama, K., Nature of the FeO2 Bonding in Myoglobin: An Overview from Physical to Clinical Biochemistry (1985) Experientia, 41 (6), pp. 701-706
  • Varnado, C.L., Mollan, T.L., Birukou, I., Smith, B.J., Henderson, D.P., Olson, J.S., Development of Recombinant Hemoglobin-based Oxygen Carriers (2013) Antioxid. Redox Signaling, 18 (17), pp. 2314-2328
  • Olson, J.S., Soman, J., Phillips, G.N., Jr., Ligand Pathways in Myoglobin: A Review of Trp Cavity Mutations (2007) IUBMB Life, 59 (89), pp. 552-562
  • Olson, J.S., Phillips, G.N., Jr., Kinetic Pathways and Barriers for Ligand Binding to Myoglobin (1996) J. Biol. Chem., 271 (30), pp. 17593-17596
  • Battistuzzi, G., Bellei, M., Casella, L., Bortolotti, C.A., Roncone, R., Monzani, E., Sola, M., Redox Reactivity of the Heme Fe3+/Fe2+ Couple in Native Myoglobins and Mutants with Peroxidase-like Activity (2007) J. Biol. Inorg. Chem., 12 (7), pp. 951-958
  • Taylor, J.F., Morgan, V.E., Oxidation-reduction Potentials of the Metmyoglobin-myoglobin System (1942) J. Biol. Chem., 144, pp. 15-20
  • Varadarajan, R., Zewert, T.E., Gray, H.B., Boxer, S.G., Effects of Buried Ionizable Amino Acids on the Reduction Potential of Recombinant Myoglobin (1989) Science, 243, pp. 69-72
  • Brunori, M., Saggese, U., Rotilio, G.C., Antonini, E., Wyman, J., Redox Equilibrium of Sperm-Whale Myoglobin, Aplysia Myoglobin, and Chironomus thummi Hemoglobin (1971) Biochemistry, 10 (9), pp. 1604-1609
  • Wood, P., The Potential Diagram for Oxygen at pH 7 (1988) Biochem. J., 253, pp. 287-289
  • Sawada, Y., Iyanagi, T., Yamazaki, I., Relation between Redox Potentials and Rate Constants in Reactions Coupled with the System Oxygen-Superoxide (1975) Biochemistry, 14 (17), pp. 3761-3764
  • Rao, P.S., Hayon, E., Redox Potentials of Free Radicals. IV. Superoxide and Hydroperoxy Radicals ·o2 - and·HO2 (1975) J. Phys. Chem., 79 (4), pp. 397-402
  • Akiyama, K., Fukuda, M., Kobayashi, N., Matsuoka, A., Shikama, K., The pH-dependent Swinging-out of the Distal Histidine Residue in Ferric Hemoglobin of a Midge Larva (Tokunagayusurika akamusi) (1994) Biochim. Biophys. Acta, 1208 (2), pp. 306-309
  • Yang, F., Phillips, G.N., Jr., Crystal Structures of CO-, Deoxy- and Met-myoglobins at Various pH Values (1996) J. Mol. Biol., 256 (4), pp. 762-774
  • Tada, T., Watanabe, Y., Matsuoka, A., Ikeda-Saito, M., Imai, K., Ni-Hei, Y., Shikama, K., African Elephant Myoglobin with an Unusual Autoxidation Behavior: Comparison with the H64Q Mutant of Sperm Whale myoglobin (1998) Biochim. Biophys. Acta, 1387 (12), pp. 165-176
  • Suzuki, T., Watanabe, Y.H., Nagasawa, M., Matsuoka, A., Shikama, K., Dual Nature of the Distal Histidine Residue in the Autoxidation Reaction of Myoglobin and Hemoglobin: Comparison of the H64 Mutants (2000) Eur. J. Biochem., 267 (20), pp. 6166-6174
  • Alfonso-Prieto, M., Biarnes, X., Vidossich, P., Rovira, C., The Molecular Mechanism of the Catalase Reaction (2009) J. Am. Chem. Soc., 131, pp. 11751-11761
  • Alfonso-Prieto, M., Vidossich, P., Rovira, C., The Reaction Mechanisms of Heme Catalases: An Atomistic View by ab initio Molecular Dynamics (2012) Arch. Biochem. Biophys., 525, pp. 121-130
  • Martí, M.A., Crespo, A., Bari, S.E., Doctorovich, F.A., Estrin, D.A., QM-MM Study of Nitrite Reduction by Nitrite Reductase of Pseudomonas aeruginosa (2004) J. Phys. Chem. B, 108 (46), pp. 18073-18080
  • Esquerra, R.M., Jensen, R.A., Bhaskaran, S., Pillsbury, M.L., Mendoza, J.L., Lintner, B.W., Kliger, D.S., Goldbeck, R.A., The pH Dependence of Heme Pocket Hydration and Ligand Rebinding Kinetics in Photodissociated Carbonmonoxymyoglobin (2008) J. Biol. Chem., 283 (20), pp. 14165-14175

Citas:

---------- APA ----------
Arcon, J.P., Rosi, P., Petruk, A.A., Marti, M.A. & Estrin, D.A. (2015) . Molecular mechanism of myoglobin autoxidation: Insights from computer simulations. Journal of Physical Chemistry A, 119(5), 1802-1813.
http://dx.doi.org/10.1021/jp5093948
---------- CHICAGO ----------
Arcon, J.P., Rosi, P., Petruk, A.A., Marti, M.A., Estrin, D.A. "Molecular mechanism of myoglobin autoxidation: Insights from computer simulations" . Journal of Physical Chemistry A 119, no. 5 (2015) : 1802-1813.
http://dx.doi.org/10.1021/jp5093948
---------- MLA ----------
Arcon, J.P., Rosi, P., Petruk, A.A., Marti, M.A., Estrin, D.A. "Molecular mechanism of myoglobin autoxidation: Insights from computer simulations" . Journal of Physical Chemistry A, vol. 119, no. 5, 2015, pp. 1802-1813.
http://dx.doi.org/10.1021/jp5093948
---------- VANCOUVER ----------
Arcon, J.P., Rosi, P., Petruk, A.A., Marti, M.A., Estrin, D.A. Molecular mechanism of myoglobin autoxidation: Insights from computer simulations. J Phys Chem A. 2015;119(5):1802-1813.
http://dx.doi.org/10.1021/jp5093948