Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The theory of response of a molecule in the presence of a static nonuniform magnetic field with uniform gradient is reviewed and extended. Induced magnetic dipole, quadrupole, and anapole moments are expressed via multipole magnetic susceptibilities. Dependence of response properties on the origin of the coordinate system with respect to which they are defined is investigated. Relationships describing the change of multipole and anapole susceptibilities in a translation of the reference system are reported. For a single molecule, two quantities are invariant and, in principle, experimentally measurable, that is, the induced magnetic dipole and the interaction energy. The trace of a second-rank anapole susceptibility, related to a pseudoscalar obtained by spatial averaging of the dipole-quadrupole susceptibility, of different sign for D and L enantiomeric systems, is origin independent. Therefore, in an isotropic chiral medium a homogeneous magnetic field induces an electronic anapole, having the same magnitude but opposite sign for two enantiomorphs. Calculations have been carried out for a set of diatomic and linear triatomic systems characterized by the presence of magnetic-field induced toroidal electron currents. © 2013 American Chemical Society.

Registro:

Documento: Artículo
Título:Magnetizabilities of diatomic and linear triatomic molecules in a time-independent nonuniform magnetic field
Autor:Provasi, P.F.; Pagola, G.I.; Ferraro, M.B.; Pelloni, S.; Lazzeretti, P.
Filiación:Departamento de Física, Northeastern University, Avenida Libertad 5500, W3400 AAS, Corrientes, Argentina
Departamento de Física, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pab. I, (1428) Buenos Aires, Argentina
Dipartimento di Chimica, Università Degli Studi di Modena e Reggio Emilia, via G. Campi 183, 41100 Modena, Italy
Palabras clave:Enantiomers; Magnetic fields; Magnetic susceptibility; Molecules; Co-ordinate system; Diatomic and linear triatomic molecules; Homogeneous magnetic field; Induced magnetic dipoles; Interaction energies; Isotropic chiral medium; Nonuniform magnetic fields; Response properties; Stereochemistry
Año:2014
Volumen:118
Número:33
Página de inicio:6333
Página de fin:6342
DOI: http://dx.doi.org/10.1021/jp408969k
Título revista:Journal of Physical Chemistry A
Título revista abreviado:J Phys Chem A
ISSN:10895639
CODEN:JPCAF
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10895639_v118_n33_p6333_Provasi

Referencias:

  • Van Vleck, J.H., (1932) The Theory of Electric and Magnetic Susceptibilities, , Oxford University Press: Oxford
  • Ramsey, N.F., Magnetic Shielding of Nuclei in Molecules (1950) Phys. Rev., 78, pp. 699-703
  • Ramsey, N.F., Dependence of magnetic shielding of nuclei upon molecular orientation (1951) Phys. Rev., 83, pp. 540-541
  • Ramsey, N.F., Chemical Effects in Nuclear Magnetic Resonance and in Diamagnetic Susceptibility (1952) Phys. Rev., 86, pp. 243-246
  • Raab, R.E., Magnetic Multipole Moments (1975) Mol. Phys., 29, pp. 1323-1331
  • Raab, R.E., De Lange, O.L., (2004) Multipole Theory in Electromagnetism, , Oxford Science Publications: Oxford
  • Lazzeretti, P., Magnetic Properties of a Molecule in Non-Uniform Magnetic Field (1993) Theor. Chim. Acta, 87, pp. 59-73
  • Caputo, M.C., Ferraro, M.B., Lazzeretti, P., Malagoli, M., Zanasi, R., Theoretical Study of the Magnetic Properties of Water Molecules in Non-Uniform Magnetic Fields (1994) J. Mol. Struct. (THEOCHEM), 305, pp. 89-99
  • Caputo, M.C., Ferraro, M.B., Lazzeretti, P., Malagoli, M., Zanasi, R., Calculation of Molecular Magnetic Properties within the Landau Gauge (1994) Phys. Rev. A, 49, pp. 3445-3449
  • Faglioni, F., Ligabue, A., Pelloni, S., Soncini, A., Lazzeretti, P., Molecular response to a time-independent non-uniform magnetic field (2004) Chem. Phys., 304, pp. 289-299
  • Pelloni, S., Lazzeretti, P., Monaco, G., Zanasi, R., Magnetic-field induced electronic anapoles in small molecules (2011) Rend. Lincei, 22, pp. 105-112
  • Bloch, F., Zur Wirkung äußerer elektromagnetischer Felder auf kleine Systeme (1961) W. Heisenberg und Die Physik Unserer Zeit, pp. 93-102. , Bopp, F. Friedr. Wieveg & Son: Braunschweig
  • Lazzeretti, P., General Connections among Nuclear Electromagnetic Shieldings and Polarizabilities (1987) Adv. Chem. Phys., 75, pp. 507-549
  • Lazzeretti, P., Electric and Magnetic Properties of Molecules (2003) Handbook of Molecular Physics and Quantum Chemistry, 3 (PART 1), pp. 53-145. , John Wiley & Sons, Ltd. Chichester Chapter 3
  • Buckingham, A.D., Stiles, P.J., Magnetic multipoles and the "pseudo-contact" chemical shift (1972) Mol. Phys., 24, pp. 99-108
  • Barron, L.D., Gray, C.G., The multipole interaction Hamiltonian for time dependent fields (1973) J. Phys. A: Math., Nucl. Gen., 6, pp. 59-61
  • Woolley, R.G., A comment on "the multipole Hamiltonian for time dependent fields" (1973) J. Phys. B: At. Mol. Opt. Phys., 6, pp. 97-L99
  • Craig, D.P., Thirunamachandran, T., (1984) Molecular Quantum Electrodynamics, , Academic Press: New York
  • Cohen-Tannoudji, C., Dupont-Roc, J., Grynberg, G., (1989) Photon and Atoms, , John Wiley & Sons: New York
  • Valatin, J.G., Singularities of Electron Kernel Functions in an External Electromagnetic Field (1954) Proc. R. Soc. London, Ser. A, 222, pp. 93-108
  • Brittin, W.E., Smythe, W.R., Wyss, W., Poincaré Gauge in Electrodynamics (1982) Am. J. Phys., 50, pp. 693-696
  • Skagerstram, B.-S.K., A Note on the Poincaré gauge (1983) Am. J. Phys., 51, pp. 1148-1149
  • Delbourgo, R., Triyanta, Equivalence between the Fock-Schwinger gauge and the Feynman gauge (1992) Int. J. Mod. Phys. A, 7, pp. 5833-5854
  • Saue, T., Post Dirac-Hartree-Fock Methods - Properties (2002) Relativistic Electronic Structure Theory. Part 1. Fundamentals, p. 332. , Schwerdtfeger, P. Elsevier: Amsterdam
  • Stewart, A.M., General Proof of Gauge Independence of the Sum of the Diamagnetic and Paramagnetic Magnetic Moments (1999) J. Phys. A: Math., Nucl. Gen., 32, pp. 6091-6096
  • Stewart, A.M., Why Semiclassical Electrodynamics is not Gauge Invariant (2000) J. Phys. A: Math., Nucl. Gen., 33, pp. 9165-9176
  • Stewart, A.M., General Gauge Independence of Diamagnetism and Paramagnetism (2000) Aust. J. Phys., 53, pp. 613-629
  • Stewart, A.M., Vector potential of the Coulomb gauge (2003) Eur. J. Phys., 24, pp. 519-524
  • Pelloni, S., Lazzeretti, P., Ring current models for acetylene and ethylene molecules (2009) Chem. Phys., 356, pp. 153-163
  • Pelloni, S., Faglioni, F., Soncini, A., Ligabue, A., Lazzeretti, P., Magnetic response of dithiin molecules: Is there anti-aromaticity in nature? (2003) Chem. Phys. Lett., 375, pp. 583-590
  • Ceulemans, A., Chibotaru, L.F., Fowler, P.W., Molecular Anapole Moments (1998) Phys. Rev. Lett., 80, pp. 1861-1864
  • Greiner, W., Reinhardt, J., (1996) Quantum Electrodynamics, , 2 nd ed. Springer Verlag: New York
  • Ligabue, A., Lazzeretti, P., Varela, M.P.B., Ferraro, M.B., On the resolution of the optical rotatory power of chiral molecules into atomic terms. A study of hydrogen peroxide (2002) J. Chem. Phys., 116, pp. 6427-6434
  • London, F., Théorie quantique des courants interatomiques dans les combinaisons aromatiques (1937) J. Phys. Radium, 8, pp. 397-409
  • Hansen, A.E., Bouman, T.D., Localized Orbital/Local Origin Method for Calculation and Analysis of NMR Shieldings. Applications to 13C Shielding Tensors (1985) J. Chem. Phys., 82, pp. 5035-5047. , see footnote 6, p. 5047
  • Epstein, S.T., (1974) The Variation Method in Quantum Chemistry, , Academic Press: New York
  • Buckingham, A.D., Chirality in NMR spectroscopy (2004) Chem. Phys. Lett., 398, pp. 1-5
  • Buckingham, A.D., Fischer, P., Direct chiral discrimination in NMR spectroscopy (2006) Chem. Phys., 324, pp. 111-116
  • Zanasi, R., Pelloni, S., Lazzeretti, P., Chiral discrimination via nuclear magnetic shielding polarisabilities from NMR spectroscopy. Theoretical study of (Ra)-1,3-dimethylallene, (2R)-2-methyloxirane, and (2R)-N-methyloxaziridine (2007) J. Comput. Chem., 28, pp. 2159-2163
  • Pelloni, S., Lazzeretti, P., Zanasi, R., Nuclear Magnetoelectric Shieldings for Chiral discrimination in NMR spectroscopy. Theoretical study of (Ra)-1,3-dimethylallene, (2R)-2-methyloxirane, and (2R)-N-methyloxaziridine Molecules (2007) J. Chem. Theor. Comput., 3, pp. 1691-1698
  • Lazzeretti, P., Soncini, A., Zanasi, R., Response tensors for chiral discrimination in NMR spectroscopy (2008) Theor. Chem. Acc., 119, pp. 99-106
  • Pagola, G.I., Ferraro, M.B., Pelloni, S., Lazzeretti, P., Sauer, S.P.A., Electric field effects on nuclear spin-spin coupling tensors and chiral discrimination via NMR spectroscopy (2011) Theor. Chem. Acc., 129, pp. 359-366
  • Pagola, G.I., Ferraro, M.B., Pelloni, S., Lazzeretti, P., Sauer, S.P.A., Erratum to: Theor. Chem. Acc. 2012, 131, 1222 (2011) Theor. Chem. Acc., 130, p. 127
  • Kjaer, H., Nielsen, M.R., Pagola, G.I., Ferraro, M.B., Lazzeretti, P., Sauer, S.P.A., Nuclear magnetic resonance J coupling constant polarizabilities of hydrogen peroxide: A basis set and correlation study (2012) J. Comput. Chem., 33, pp. 1845-1853
  • (2005) An Electronic Structure Program, Release 2.0, , http://www.kjemi.uio.no/software/dalton/, DALTON
  • Woon, D.E., Dunning Jr., T.H., Gaussian basis sets for use in correlated molecular calculations. V. Core-ion valence basis sets for boron through neon (1995) J. Chem. Phys., 103, pp. 4572-4585
  • Pelloni, S., Lazzeretti, P., Zanasi, R., Assessment of sigma-diatropicity of the cyclopropane molecule (2007) J. Phys. Chem. A, 111, pp. 8163-8169
  • Pelloni, S., Monaco, G., Lazzeretti, P., Zanasi, R., Beyond NICS: Estimation of the magnetotropicity of inorganic unsaturated planar rings (2011) Phys. Chem. Chem. Phys., 13, pp. 20666-20672
  • Carion, R., Champagne, B., Monaco, G., Zanasi, R., Pelloni, S., Lazzeretti, P., Ring current model and anisotropic magnetic response of cyclopropane (2010) J. Chem. Theor. Comput., 6, pp. 2002-2018
  • Frisch, M.J., Trucks, G.W., (2003) Gaussian 2003, Revision B.05, , Gaussian, Inc. Pittsburgh, PA
  • Mohr, P.J., Taylor, B.N., CODATA Recommended Values of the Fundamental Physical Constants: 2002 (2005) Rev. Mod. Phys., 77, pp. 1-107
  • Birss, R.R., (1966) Symmetry and Magnetism, , North-Holland Publishng Co. Amsterdam
  • Birss, R.R., Macroscopic symmetry in space-time (1963) Rep. Prog. Phys., 26, pp. 307-360
  • Tavger, B.A., Zaitsev, V.M., Magnetic Symmetry of Crystals (1956) Soviet Phys. JETP, 3, pp. 430-436
  • Lazzeretti, P., Ring currents (2000) Progress in Nuclear Magnetic Resonance Spectroscopy, 36, pp. 1-88. , Emsley, J. W. Feeney, J. Sutcliffe, L. H. Elsevier: New York
  • Schmid, H., On ferrotoroidics and electrotoroidic, magnetotoroidic and piezotoroidic effects (2001) Ferroelectrics, 252, pp. 41-50

Citas:

---------- APA ----------
Provasi, P.F., Pagola, G.I., Ferraro, M.B., Pelloni, S. & Lazzeretti, P. (2014) . Magnetizabilities of diatomic and linear triatomic molecules in a time-independent nonuniform magnetic field. Journal of Physical Chemistry A, 118(33), 6333-6342.
http://dx.doi.org/10.1021/jp408969k
---------- CHICAGO ----------
Provasi, P.F., Pagola, G.I., Ferraro, M.B., Pelloni, S., Lazzeretti, P. "Magnetizabilities of diatomic and linear triatomic molecules in a time-independent nonuniform magnetic field" . Journal of Physical Chemistry A 118, no. 33 (2014) : 6333-6342.
http://dx.doi.org/10.1021/jp408969k
---------- MLA ----------
Provasi, P.F., Pagola, G.I., Ferraro, M.B., Pelloni, S., Lazzeretti, P. "Magnetizabilities of diatomic and linear triatomic molecules in a time-independent nonuniform magnetic field" . Journal of Physical Chemistry A, vol. 118, no. 33, 2014, pp. 6333-6342.
http://dx.doi.org/10.1021/jp408969k
---------- VANCOUVER ----------
Provasi, P.F., Pagola, G.I., Ferraro, M.B., Pelloni, S., Lazzeretti, P. Magnetizabilities of diatomic and linear triatomic molecules in a time-independent nonuniform magnetic field. J Phys Chem A. 2014;118(33):6333-6342.
http://dx.doi.org/10.1021/jp408969k