Caputo, M.C.; Provasi, P.F.; Benitez, L.; Georg, H.C.; Canuto, S.; Coutinho, K. "Monte carlo-quantum mechanics study of magnetic properties of hydrogen peroxide in liquid water" (2014) Journal of Physical Chemistry A. 118(32):6239-6247
El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor


A theoretical study of magnetic properties of hydrogen peroxide in water has been carried out by means of Monte Carlo simulation and quantum mechanics calculations. The solvent effects were evaluated in supermolecular structures generated by simulations in the NPT ensemble. The solute-solvent structure was analyzed in terms of radial distribution functions, and the solute-solvent hydrogen bonds were identified with geometric and energetic criteria. Approximately three water molecules are hydrogen bonded to H2O 2 (0.6 and 0.8 in each hydrogen and oxygen atom, respectively, of the H2O2). Although, on average, both hydroxyls of the peroxide are equivalent, the distribution of hydrogen-bonded water molecules is highly asymmetric. Analyzing the statistics of the hydrogen bonds, we identify that only 34% of the configurations give symmetric distributions around the two hydroxyls of the H2O2 simultaneously. The magnetic shieldings and the indirect spin-spin coupling constants were calculated at the B3LYP/aug-cc-pVTZ and aug-cc-pVTZ-J computational level. We find that the solvent shields the oxygen and unshields the hydrogen atoms of the peroxide (+5.5 and -2.9 ppm, respectively), with large fluctuation from configuration to configuration in the oxygen case, an effect largely accounted for in terms of a single hydrogen bond with H2O2 as the proton donor. The most sensitive coupling in the presence of the solvent is observed to be the one-bond J(O,H). © 2014 American Chemical Society.


Documento: Artículo
Título:Monte carlo-quantum mechanics study of magnetic properties of hydrogen peroxide in liquid water
Autor:Caputo, M.C.; Provasi, P.F.; Benitez, L.; Georg, H.C.; Canuto, S.; Coutinho, K.
Filiación:Departamento de Física, FCEN, Ciudad Universitaria, 1428, Buenos Aires, Argentina
Department of Physics - IMIT, Northeastern University, Av. Libertad 5500, Corrientes, Argentina
Instituto de Física, Universidade Federal de Goiás, CP 131, 74001-970 Goiânia, GO, Brazil
Instituto de Física, Universidade de São Paulo, CP 66318, 05315-970 São Paulo, Brazil
Palabras clave:Atoms; Hydrogen peroxide; Magnetic properties; Molecules; Monte Carlo methods; Oxidation; Oxygen; Peroxides; Quantum theory; Solvents; Computational level; Hydrogen-bonded water molecules; Indirect spin-spin coupling; Radial distribution functions; Solvent effects; Super-molecular structures; Symmetric distributions; Theoretical study; Hydrogen bonds; hydrogen peroxide; water; chemistry; magnetism; Monte Carlo method; quantum theory; Hydrogen Peroxide; Magnetic Phenomena; Monte Carlo Method; Quantum Theory; Water
Página de inicio:6239
Página de fin:6247
Título revista:Journal of Physical Chemistry A
Título revista abreviado:J Phys Chem A
CAS:hydrogen peroxide, 7722-84-1; water, 7732-18-5; Hydrogen Peroxide; Water


  • Kulkarni, A.D., Pathak, R.K., Bartolotti, L.J., Structures, Energetics and Vibrational Spectra of H2O 2···(H2O)n, n = 1-6 clusters: Ab Initio Quantum Chemical Investigations (2005) J. Phys. Chem. A, 109, pp. 4583-4590
  • Xue-Hai, J., Ji-Jun, X., He-Ming, X., Theoretical Study on Intermolecular Interactions and Thermodynamic Properties of Water Hydrogen Peroxide Clusters (2003) J. Mol. Struct.: THEOCHEM, 626, pp. 231-238
  • Ferreira, C., Martiniano, H.F.M.C., Cabral, B.J.C., Aquilanti, V., Electronic Excitation and Ionization of Hydrogen Peroxide-Water Clusters: Comparison with Water Clusters (2011) Int. J. Quantum Chem., 111, pp. 1824-1835
  • Zhou, Z., Du, D., Fu, A., Theoretical Study of the Rotation Barrier of Hydrogen Peroxide in Hydrogen Bonded Structure of HOOH-H2O Complexes in Gas and Solution Phase (2005) J. Mol. Struct.: THEOCHEM, 717, pp. 127-134
  • Sennikov, P.G., Ignatov, S.K., Schrems, O., Complexes and Clusters of Water Relevant to Atmospheric Chemistry: H 2O Complexes with Oxidants (2005) ChemPhysChem, 6, pp. 392-412
  • Kulkarni, A.D., Pathak, R.K., Bartolotti, L.J., Effect of Additional Hydrogen Peroxide to H2O 2···(H2O)n, n = 1 and 2 Complexes: Quantum Chemical Study (2006) J. Chem. Phys., 124, pp. 2143091-2143097
  • Ignatov, S.K., Sennikov, P.G., Jacobi, H.W., Razuvaev, A.G., Schrems, O., Surface Species Formed during uv Photolysis of Ozone Adsorbed on Water Ice Films at 80 k. A Combined RAFTIR and DFT Study (2003) Phys. Chem. Chem. Phys., 5, pp. 496-505
  • Aparicio, F., Contreras, R., Galvan, M., Cedillo, A., Global and Local Reactivity and Activation Patterns of HOOX (X = H, NO2, CO 2 -so 3-) Peroxides with Solvent Effects (2003) J. Phys. Chem. A, 107, pp. 10098-10104
  • Akiya, N., Savage, P.E., Effect of Water Density on Hydrogen Peroxide Dissociation in Supercritical Water. 2. Reaction Kinetics (2000) J. Phys. Chem. A, 104, pp. 4441-4448
  • Fedorov, D.G., Sugita, Y., Choi, C.H., Efficient Parallel Implementations of QM/MM-REMD (Quantum Mechanical/Molecular Mechanics-Replica-Exchange MD) and Umbrella Sampling: Isomerization of H2O2 in Aqueous Solution (2013) J. Phys. Chem. B, 117, pp. 7996-8002
  • De Dios, A.C., Jameson, C.J., Recent Advances in Nuclear Shielding Calculations (2012) Annu. Rep. NMR Spectrosc., 77, pp. 1-80
  • Sebastiani, D., Rothlisberger, U., Nuclear Magnetic Resonance Chemical Shifts from Hybrid DFT QM/MM Calculations (2004) J. Phys. Chem. B, 108, pp. 2807-2815
  • Kongsted, J., Nielsen, C.B., Mikkelsen, K.V., Christiansen, O., Ruud, K., Nuclear Magnetic Shielding Constants of Liquid Water: Insights from Hybrid Quantum Mechanics/Molecular Mechanics Models (2007) J. Chem. Phys., 126, p. 034510
  • Sebastiani, D., Parrinello, M., A New Ab-Initio Approach for NMR Chemical Shifts in Periodic Systems (2001) J. Phys. Chem. A, 105, pp. 1951-1958
  • Pennanen, T.S., Vaara, J., Lantto, P., Sillanpa, A.J., Laasonen, K., Jokisaari, J., Nuclear Magnetic Shielding and Quadrupole Coupling Tensors in Liquid Water: A Combined Molecular Dynamics Simulation and Quantum Chemical Study (2006) J. Am. Chem. Soc., 126, pp. 11093-11102
  • Mennucci, B., Tomasi, J., Continuum Solvation Models: A New Approach to the Problem of Solute's Charge Distribution and Cavity Boundaries (1997) J. Chem. Phys., 106, pp. 5151-5158
  • Coutinho, K., Canuto, S., Solvent Effects in Emission Spectroscopy: A Monte Carlo Quantum Mechanics Study of the n ← π* Shift of Formaldehyde in Water (2000) J. Chem. Phys., 113, pp. 9132-9139
  • Ludwig, V., Coutinho, K., Borin, A.C., Canuto, S., Electronic Polarization of 1H-Benzotriazole in Water: Ground and First Excited-state Dipole Moments (2003) Int. J. Quantum Chem., 95, pp. 572-579
  • Wolinski, K., Hilton, J.F., Pulay, P., Efficient Implementation of the Gauge-Independent Atomic Orbital Method for NMR Chemical Shift Calculations (1990) J. Am. Chem. Soc., 112, pp. 8251-8260
  • Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Zakrzewski, V.G., Burant, J.C., (2003) Gaussian03, , revision A.11.2; Gaussian, Inc. Pittsburgh, PA
  • Becke, A.D., Density-Functional Thermochemistry. III. The Role of Exact Exchange (1993) J. Chem. Phys., 98, pp. 5648-5652
  • Lee, C., Yang, W., Parr, R.G., Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density (1998) Phys. Rev. B, 37, pp. 785-789
  • Krivdin, L.B., Sauer, S.P.A., Peralta, J.E., Contreras, R.H., Non-empirical Calculations of NMR Indirect Carbon-Carbon Coupling Constants: 1. Three-Membered Rings (2002) Magn. Reson. Chem., 40, pp. 187-194
  • Dunning Jr., T.H., Gaussian Basis Sets for Use in Correlated Molecular Calculations. I. The Atoms Boron through Neon and Hydrogen (1989) J. Chem. Phys., 90, pp. 1007-1023
  • Helgaker, T., Jaszunski, M., Ruud, K., Ab Initio Methods for the Calculation of NMR Shielding and Indirect Spin-Spin Coupling Constants (1999) Chem. Rev., 99, pp. 293-352
  • Rusakov, Y.Y., Krivdin, L.B., Modern Quantum Chemical Methods for Calculating Spin-Spin Coupling Constants: Theoretical Basis and Structural Applications in Chemistry (2013) Russ. Chem. Rev., 82, pp. 99-130
  • Enevoldsen, T., Oddershede, J., Sauer, S.P.A., Correlated Calculations of Indirect Nuclear Spin-Spin Coupling Constants Using Second Order Polarization Propagator Approximations: SOPPA and SOPPA(CCSD) (1998) Theor. Chem. Acc., 100, pp. 275-284
  • Kendall, R.A., Dunning, T.H., Harrison, R.J., Electron Affinities of the First-Row Atoms Revisited. Systematic Basis Sets and Wave Functions (1992) J. Chem. Phys., 96, pp. 6796-6806
  • Provasi, P.F., Aucar, G.A., Sauer, S.P.A., The Effect of Lone Pairs and Electronegativity on the Indirect Nuclear Spin-Spin Coupling Constants in CH2X (X = CH2, NH, O, S): Ab Initio Calculations Using Optimized Contracted Basis Sets (2001) J. Chem. Phys., 115, pp. 1324-1334
  • Provasi, P.F., Sauer, S.P.A., Optimized Basis Sets for the Calculation of Indirect Nuclear Spin-Spin Coupling Constants Involving the Atoms B, Al, Si, P, and Cl (2010) J. Chem. Phys., 133, p. 054308
  • Allen, M.P., Tildesley, D.J., (1987) Computer Simulation of Liquids, , Clarendon: Oxford, U.K
  • Vácha, R., Slavíćek, P., Mucha, M., Finlayson-Pitts, B.J., Jungwirth, P., Adsorption of Atmospherically Relevant Gases at the Air/Water Interface: Free Energy Profiles of Aqueous Solvation of N2, O2, O3, OH, H2O, HO2, and H2O 2 (2004) J. Phys. Chem. A, 108, pp. 11573-11579
  • Jorgensen, W.L., Transferable Intermolecular Potential Functions for Water, Alcohols, and Ethers. Application to Liquid Water (1981) J. Am. Chem. Soc., 103, pp. 335-340
  • Coutinho, K., Canuto, S., (2003) DICE, A Monte Carlo Program for Molecular Liquid Simulation, , University of São Paulo: São Paulo, Brazil
  • Ichikawaa, K., Kamedaad, Y., Yamaguchib, T., Wakitab, H., Misawac, M., Neutron-Diffraction Investigation of the Intramolecular Structure of a Water Molecule in the Liquid Phase at High Temperatures (1991) Mol. Phys., 73, pp. 79-86
  • Redington, R.L., Olson, W.B., Cross, P.C., Studies of Hydrogen Peroxide: The Infrared Spectrum and the Internal Rotation Problem (1962) J. Chem. Phys., 36, pp. 1311-1326
  • Coutinho, K., Canuto, S., Zerner, M.C., A Monte Carlo-Quantum Mechanics Study of the Solvatochromic Shifts of the Lowest Transition of Benzene (2000) J. Chem. Phys., 112, pp. 9874-9880
  • Martins-Costa, M.T.C., Ruiz-Lopez, M.F., Molecular Dynamics of Hydrogen Peroxide in Liquid Water Using a Combined Quantum/Classical Force Field (2007) Chem. Phys., 332, pp. 341-347
  • Canuto, S., Coutinho, K., From Hydrogen Bond to Bulk: Solvation Analysis of the n -π* Transition of Formaldehyde in Water (2000) Int. J. Quantum Chem., 77, pp. 192-198
  • Rocha, W.R., Martins, V.M., Coutinho, K., Canuto, S., Solvent Effects on the Electronic Absorption Spectrum of Formamide Studied by a Sequential Monte Carlo/Quantum Mechanical Approach (2002) Theor. Chem. Acc., 108, pp. 31-37
  • Ramsey, N.F., Electron Coupled Interactions between Nuclear Spins in Molecules (1953) Phys. Rev., 91, pp. 303-307
  • Lynden-Bell, R.K., Harris, R.M., (1969) Nuclear Magnetic Resonance Spectroscopy, , Appleton Century Crofts: New York
  • Wigglesworth, R.D., Raynes, W.T., Sauer, S.P.A., Oddershede, J., Calculated Spin-Spin Coupling Surfaces in the Water Molecule; Prediction and Analysis of J(O,H), J(O,D) and J(H,D) in Water Isotopomeres (1998) Mol. Phys., 94, pp. 851-862
  • Casanueva, J., San Fabián, J., Dez, E., Esteban, A.L., NMR Spin-Spin Coupling Constants in Water Molecule: Equilibrium and Rovibrational Values (2001) J. Mol. Struct., 565, pp. 449-454
  • Sergeyev, N.M., Sergeyeva, N.D., Strelenko, Yu.A., Raynes, W.T., The 1h-2h, 17o-1h Coupling Constants and the 16o/18o Induced Proton Isotope Shift in Water (1997) Chem. Phys. Lett., 277, pp. 142-146
  • Kjær, H., Nielsen, M.R., Pagola, G.I., Ferraro, M.B., Lazzeretti, P., Sauer, S.P.A., Nuclear Magnetic Resonance J Coupling Constant Polarizabilities of Hydrogen Peroxide: A Basis Set and Correlation Study (2012) J. Comput. Chem., 33, pp. 1845-1853
  • Alkorta, I., Elguero, J., Provasi, P.F., Ferraro, M.B., Theoretical Study of the 1:1 and 2:1 (Homo- and Heterochiral) Complexes of XOOX′ (X, X′ = H, CH3) with Lithium Cation (2011) J. Phys. Chem. A, 115, pp. 7805-7810
  • Schäfer, A., Horn, H., Ahlrichs, R., Fully Optimized Contracted Gaussian Basis Sets for Atoms Li to Kr (1992) J. Chem. Phys., 97, p. 2571


---------- APA ----------
Caputo, M.C., Provasi, P.F., Benitez, L., Georg, H.C., Canuto, S. & Coutinho, K. (2014) . Monte carlo-quantum mechanics study of magnetic properties of hydrogen peroxide in liquid water. Journal of Physical Chemistry A, 118(32), 6239-6247.
---------- CHICAGO ----------
Caputo, M.C., Provasi, P.F., Benitez, L., Georg, H.C., Canuto, S., Coutinho, K. "Monte carlo-quantum mechanics study of magnetic properties of hydrogen peroxide in liquid water" . Journal of Physical Chemistry A 118, no. 32 (2014) : 6239-6247.
---------- MLA ----------
Caputo, M.C., Provasi, P.F., Benitez, L., Georg, H.C., Canuto, S., Coutinho, K. "Monte carlo-quantum mechanics study of magnetic properties of hydrogen peroxide in liquid water" . Journal of Physical Chemistry A, vol. 118, no. 32, 2014, pp. 6239-6247.
---------- VANCOUVER ----------
Caputo, M.C., Provasi, P.F., Benitez, L., Georg, H.C., Canuto, S., Coutinho, K. Monte carlo-quantum mechanics study of magnetic properties of hydrogen peroxide in liquid water. J Phys Chem A. 2014;118(32):6239-6247.