Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Registro:

Documento: Artículo
Título:Orbital localization criterion as a complementary tool in the bonding analysis by means of electron localization function: Study of the Si n (BH) 5-n 2- (n = 0-5) clusters
Autor:Oña, O.B.; Alcoba, D.R.; Torre, A.; Lain, L.; Torres-Vega, J.J.; Tiznado, W.
Filiación:Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, Universidad Nacional de la Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Diag. 113 y 64 (s/n), Sucursal 4, CC 16, 1900 La Plata, Argentina
Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
Instituto de Física de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Universitaria, 1428 Buenos Aires, Argentina
Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad Del País Vasco, Apdo. 644, E-48080 Bilbao, Spain
Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Av. República 275, Santiago de Chile, Chile
Palabras clave:Bonding analysis; Chemical bondings; Complementary tools; Electron localization function; Localization procedure; Molecular orbital theory; Si atoms; Chemical bonds; Molecular orbitals; Silicon; Crystal atomic structure
Año:2013
Volumen:117
Número:48
Página de inicio:12953
Página de fin:12958
DOI: http://dx.doi.org/10.1021/jp4081228
Título revista:Journal of Physical Chemistry A
Título revista abreviado:J Phys Chem A
ISSN:10895639
CODEN:JPCAF
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10895639_v117_n48_p12953_Ona

Referencias:

  • Lewis, G.N., The Atom and the Molecule (1916) J. Am. Chem. Soc., 38, pp. 762-785
  • Mulliken, R.S., Electronic Structures of Polyatomic Molecules and Valence. II. General Considerations (1932) Phys. Rev., 41, pp. 49-71
  • Hund, F., Zur Deutung Der Molekelspektren, I.V., (1928) Z. Phys., 51, pp. 759-795
  • Lennard-Jones, J., The Molecular Orbital Theory of Chemical Valency. II. Equivalent Orbitals in Molecules of Known Symmetry (1949) Proc. R. Soc. London, A, 198, pp. 14-26
  • Lennard-Jones, J., The Molecular Orbital Theory of Chemical Valency. I. The Determination of Molecular Orbitals (1949) Proc. R. Soc. London, A, 198, pp. 1-13
  • Foster, J.M., Boys, S.F., Canonical Configurational Interaction Procedure (1960) Rev. Mod. Phys., 32, pp. 300-302
  • Edmiston, C., Ruedenberg, K., Localized Atomic and Molecular Orbitals (1963) Rev. Mod. Phys., 35, pp. 457-464
  • Pipek, J., Mezey, P.G., A Fast Intrinsic Localization Procedure Applicable for ab initio and Semiempirical Linear Combination of Atomic Orbital Wave Functions (1989) J. Chem. Phys., 90, pp. 4916-4926
  • Cioslowski, J., Partitioning of Electronic-Properties in 2-Center, One-Electron Coulombic Systems (1990) Int. J. Quantum Chem., 37, pp. 291-307
  • Alcoba, D.R., Lain, L., Torre, A., Bochicchio, R.C., An Orbital Localization Criterion Based on the Theory of ″fuzzy″ Atoms (2006) J. Comput. Chem., 27, pp. 596-608
  • Bader, R.F.W., (1990) Atoms in Molecules: A Quantum Theory, , Oxford University Press: Oxford, U.K
  • Bader, R.F.W., Streitwieser, A., Neuhaus, A., Laidig, K.E., Speers, P., Electron Delocalization and the Fermi Hole (1996) J. Am. Chem. Soc., 118, pp. 4959-4965
  • Dawson, K.A., March, N.H., The density-matrix, Density, and Fermi Hole in Hartree-Fock Theory (1984) J. Chem. Phys., 81, pp. 5850-5854
  • Dobson, J.F., Interpretation of the Fermi Hole Curvature (1991) J. Chem. Phys., 94, pp. 4328-4332
  • Gopinathan, M.S., Whitehead, M.A., Bogdanovic, R., Fermi Hole and Exchange Parameter in X-alpha Theory (1976) Phys. Rev. A, 14, pp. 1-10
  • Luken, W.L., Beratan, D.N., Localized Orbitals and the Fermi Hole (1982) Theor. Chim. Acta, 61, pp. 265-281
  • Ponec, R., Electron pairing and chemical bonds. Chemical structure, valences and structural similarities from the analysis of the Fermi holes (1997) J. Math. Chem., 21, pp. 323-333
  • Bochicchio, R., Lain, L., Torre, A., Ponec, R., Topological Population Analysis from Higher Order Densities. I. Hartree-Fock level (2000) J. Math. Chem., 28, pp. 83-90
  • Bochicchio, R.C., Torre, A., Lain, L., Correlated Holes and their Relationships with Reduced Density Matrices and Cumulants (2005) J. Chem. Phys., 122, p. 084117
  • Alcoba, D.R., Bochicchio, R.C., Torre, A., Lain, L., Decomposition of the First-order Reduced Density Matrix: An Isopycnic Localization Treatment (2006) J. Phys. Chem. A, 110, pp. 9254-9260
  • Alcoba, D.R., Lain, L., Torre, A., Bochicchio, R.C., A Study of the Partitioning of the first-order reduced density matrix according to the Theory of Atoms in Molecules (2005) J. Chem. Phys., 123, p. 144113
  • Alcoba, D.R., Bochicchio, R.C., Lain, L., Torre, A., Domain-Averaged Fermi Hole and Domain-Restricted Reduced Density Matrices: A Critical Comparison (2011) Int. J. Quantum Chem., 111, pp. 256-262
  • Noury, S., Krokidis, X., Fuster, F., Silvi, B., Computational Tools for the Electron Localization Function Topological Analysis (1999) Comput. Chem., 23, pp. 597-604
  • Poater, J., Duran, M., Sola, M., Silvi, B., Theoretical Evaluation of Electron Delocalization in Aromatic Molecules by Means of Atoms in Molecules (AIM) and Electron Localization Function (ELF) Topological Approaches (2005) Chem. Rev., 105, pp. 3911-3947
  • Santos, J.C., Andres, J., Aizman, A., Fuentealba, P., An Aromaticity Scale Based on the Topological Analysis of the Electron Localization Function Including sigma and pi Contributions (2005) J. Chem. Theory Comput., 1, pp. 83-86
  • Santos, J.C., Tiznado, W., Contreras, R., Fuentealba, P., Sigma-pi Separation of the Electron Localization Function and Aromaticity (2004) J. Chem. Phys., 120, pp. 1670-1673
  • Savin, A., Nesper, R., Wengert, S., Fassler, T.F., ELF: The Electron Localization Function (1997) Angew. Chem Int. Ed., 36, pp. 1809-1832
  • Savin, A., Silvi, B., Colonna, F., Topological Analysis of the Electron Localization Function Applied to Delocalized Bonds (1996) Can. J. Chem., 74, pp. 1088-1096
  • Silvi, B., Savin, A., Classification of Chemical Bonds Based on Topological Analysis of Electron Localization Functions (1994) Nature, 371, pp. 683-686
  • Ayers, P.W., Electron Localization Functions and Local Measures of the Covariance (2005) J. Chem. Sci., 117, pp. 441-454
  • Savin, A., Phase transition in iodine: A chemical picture (2004) J. Phys. Chem. Solids, 65, pp. 2025-2029
  • Kohout, M.A., Measure of Electron Localizability (2004) Int. J. Quantum Chem., 97, pp. 651-658
  • Oña, O.B., Alcoba, D.R., Tiznado, W., Torre, A., Lain, L., An Orbital Localization Criterion Based on the Topological Analysis of the Electron Localization Function (2013) Int. J. Quantum Chem., 113, pp. 1401-1408
  • Osorio, E., Sergeeva, A.P., Santos, J.C., Tiznado, W., Theoretical Study of the Si5-n(BH)(n)(2-) and Na(Si5-n(BH)(n))(-) (n=0-5) Systems (2012) Phys. Chem. Chem. Phys., 14, pp. 16326-16330
  • Raghavachari, K., Rohlfing, C.M., Electronic Structures of the Negative Ions Si-2 -Si-10: Electron Affinities of Small Silicon Clusters (1991) J. Chem. Phys., 94, pp. 3670-3678
  • Goicoechea, J.M., Sevov, S.C., Naked Deltahedral Silicon Clusters in Solution: Synthesis and Characterization of Si-9(3-) and Si-5(2-) (2004) J. Am. Chem. Soc., 126, pp. 6860-6861
  • Zubarev, D.Y., Boldyrev, A.I., Li, X., Cui, L.F., Wang, L.S., Chemical Bonding in Si-5(2-) and NaSi5- via Photoelectron Spectroscopy and ab initio Calculations (2005) J. Phys. Chem. A, 109, pp. 11385-11394
  • Zubarev, D.Y., Boldyrev, A.I., Developing Paradigms of Chemical Bonding: Adaptive Natural Density Partitioning (2008) Phys. Chem. Chem. Phys., 10, pp. 5207-5217
  • Zubarev, D.Y., Boldyrev, A.I., Revealing Intuitively Assessable Chemical Bonding Patterns in Organic Aromatic Molecules via Adaptive Natural Density Partitioning (2008) J. Org. Chem., 73, pp. 9251-9258
  • Leonard, J.M., Luken, W.L., Quadratically Convergent Calculation of Localized Molecular-Orbitals (1982) Theor. Chim. Acta, 62, pp. 107-132
  • Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.H., Koseki, S., Montgomery, J.A., General Aomic and Molecular Electronic-Structure System (1993) J. Comput. Chem., 14, pp. 1347-1363
  • Becke, A.D., Density-Functional Exchange-Energy Approximation with Correct Asymptotic-Behaviour (1988) Phys. Rev. A, 38, pp. 3098-3100
  • Lee, C.T., Yang, W.T., Parr, R.G., Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Eelectron-Density (1988) Phys. Rev. B, 37, pp. 785-789
  • Krishnan, R., Binkley, J.S., Seeger, R., Pople, J.A., Self-Consistent Molecular-Orbital Methods 0.20. Basis Set for Correlated Wave-Functions (1980) J. Chem. Phys., 72, pp. 650-654
  • Kohout, M., (2011), DGrid, version 4.6 ed. Radebeul; Alexandrova, A.N., Boldyrev, A.I., Search for the Li-n(0/+1/-1) (n=5-7) lowest-energy structures using the ab initio Gradient Embedded Genetic Algorithm (GEGA). Elucidation of the Chemical Bonding in the Lithium Clusters (2005) J. Chem. Theory Comput., 1, pp. 566-580
  • Alexandrova, A.N., H·(H 2 O) n Clusters: Microsolvation of the Hydrogen Atom via Molecular ab Initio Gradient Embedded Genetic Algorithm (GEGA) (2010) J. Phys. Chem. A, 114, pp. 12591-12599
  • Weigend, F., Ahlrichs, R., Balanced Basis Sets of Split Valence, Triple zeta Valence and Quadruple zeta Valence Quality for H to Rn: Design and Assessment of Accuracy (2005) Phys. Chem. Chem. Phys., 7, pp. 3297-3305
  • Schleyer V. P, R., Maerker, M., Dransfeld, A., Jiao, H.J., Hommes V. R J N, E., Nucleus-Independent Chemical Shifts: A Simple and Efficient Aromaticity Probe (1996) J. Am. Chem. Soc., 118, pp. 6317-6318
  • Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Fox, D.J., (2010) Gaussian 09, , revision C.01; Gaussian, Inc. Wallingford, CT
  • Bode, B.M., Gordon, M.S., MacMolPlt: A Graphical User Interface for GAMESS (1998) J. Mol. Graphics Modell., 16, pp. 133-138
  • Momma, K., Izumi, F., VESTA 3 for Three-dimensional Visualization of Crystal, Volumetric and Morphology data (2011) J. Appl. Crystallogr., 44, pp. 1272-1276
  • Schleyer, P.V., Subramanian, G., Dransfeld, A., Decisive Evidence for Nonclassical Bonding in Five-vertex Closo-boranes, X(2)B(3)N(3), X=N, CH, P, SiH, BH (1996) J. Am. Chem. Soc., 118, pp. 9988-9989

Citas:

---------- APA ----------
Oña, O.B., Alcoba, D.R., Torre, A., Lain, L., Torres-Vega, J.J. & Tiznado, W. (2013) . Orbital localization criterion as a complementary tool in the bonding analysis by means of electron localization function: Study of the Si n (BH) 5-n 2- (n = 0-5) clusters. Journal of Physical Chemistry A, 117(48), 12953-12958.
http://dx.doi.org/10.1021/jp4081228
---------- CHICAGO ----------
Oña, O.B., Alcoba, D.R., Torre, A., Lain, L., Torres-Vega, J.J., Tiznado, W. "Orbital localization criterion as a complementary tool in the bonding analysis by means of electron localization function: Study of the Si n (BH) 5-n 2- (n = 0-5) clusters" . Journal of Physical Chemistry A 117, no. 48 (2013) : 12953-12958.
http://dx.doi.org/10.1021/jp4081228
---------- MLA ----------
Oña, O.B., Alcoba, D.R., Torre, A., Lain, L., Torres-Vega, J.J., Tiznado, W. "Orbital localization criterion as a complementary tool in the bonding analysis by means of electron localization function: Study of the Si n (BH) 5-n 2- (n = 0-5) clusters" . Journal of Physical Chemistry A, vol. 117, no. 48, 2013, pp. 12953-12958.
http://dx.doi.org/10.1021/jp4081228
---------- VANCOUVER ----------
Oña, O.B., Alcoba, D.R., Torre, A., Lain, L., Torres-Vega, J.J., Tiznado, W. Orbital localization criterion as a complementary tool in the bonding analysis by means of electron localization function: Study of the Si n (BH) 5-n 2- (n = 0-5) clusters. J Phys Chem A. 2013;117(48):12953-12958.
http://dx.doi.org/10.1021/jp4081228