Artículo

Alata, I.; Bert, J.; Broquier, M.; Dedonder, C.; Feraud, G.; Grégoire, G.; Soorkia, S.; Marceca, E.; Jouvet, C. "Electronic spectra of the protonated indole chromophore in the gas phase" (2013) Journal of Physical Chemistry A. 117(21):4420-4427
La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The electronic spectroscopy of cold protonated indole was investigated experimentally and theoretically. Two isomers were observed by experiment: The first isomer corresponds to the lowest-energy isomer in the calculations, absorbing at ∼350 nm and protonated on the C3 atom of the pyrrole ring. According to our calculations, the absorptions of the other isomers protonated on carbon atoms (C2, C4, C5, C 6, and C7) are in the visible region. Indeed, the absorption of the second observed isomer starts at 488 nm and was assigned to protonation on the C2 carbon of the pyrrole ring. Because good agreement was obtained between the calculated and experimental transitions for the observed isomers, reasonable ab initio transition energies can also be expected for the higher-energy isomers protonated on other carbon atoms, which should also absorb in the visible region. Protonation on the nitrogen atom leads to a transition that is blue-shifted with respect to that of the most stable isomer. © 2013 American Chemical Society.

Registro:

Documento: Artículo
Título:Electronic spectra of the protonated indole chromophore in the gas phase
Autor:Alata, I.; Bert, J.; Broquier, M.; Dedonder, C.; Feraud, G.; Grégoire, G.; Soorkia, S.; Marceca, E.; Jouvet, C.
Filiación:CLUPS (Centre Laser de l'Université Paris-Sud/LUMAT FR 2764), Université Paris-Sud, 91405 Orsay Cedex, France
Institut des Sciences Moléculaires d'Orsay (ISMO, UMR 8214 CNRS), Université Paris-Sud, 91405 Orsay Cedex, France
Atomic Energy Commission of Syria, P.O. Box 6091, Damascus, Syrian Arab Republic
PIIM, Aix-Marseille Université, UMR-CNRS 7345, Avenue Escadrille Normandie-Niémen, 13397 Marseille cedex 20, France
Laboratoire de Physique des Lasers, Université Paris 13, CNRS, 93430 Villetaneuse, France
INQUIMAE-FCEN, UBA, Ciudad Universitaria, 3er piso, 1428 Buenos Aires, Argentina
Palabras clave:A transitions; Electronic spectroscopy; Electronic spectrum; Lowest-energy isomers; Nitrogen atom; Stable isomers; Transition energy; Visible region; Aromatic compounds; Atoms; Calculations; Carbon; Chromophores; Polycyclic aromatic hydrocarbons; Protonation; Isomers; indole derivative; proton; article; chemistry; gas; quantum theory; ultraviolet spectrophotometry; Gases; Indoles; Protons; Quantum Theory; Spectrophotometry, Ultraviolet
Año:2013
Volumen:117
Número:21
Página de inicio:4420
Página de fin:4427
DOI: http://dx.doi.org/10.1021/jp402298y
Título revista:Journal of Physical Chemistry A
Título revista abreviado:J Phys Chem A
ISSN:10895639
CODEN:JPCAF
CAS:proton, 12408-02-5, 12586-59-3; Gases; Indoles; Protons
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10895639_v117_n21_p4420_Alata

Referencias:

  • Lumry, R., Hershberger, M., Status of Indole Photochemistry with Special Reference Tobiological Applications (1978) Photochem. Photobiol., 27 (6), pp. 819-840
  • Lakowicz, J.R., (1999) Principles of Fluorescence Spectroscopy, , 2 nd ed. Kluwer Academic Publishers/Plenum Press: New York
  • Vivian, J.T., Callis, P.R., Mechanisms of Tryptophan Fluorescence Shifts in Proteins (2001) Biophys. J., 80 (5), pp. 2093-2109
  • Callis, P.R., Liu, T., Quantitative Prediction of Fluorescence Quantum Yields for Tryptophan in Proteins (2004) J. Phys. Chem. B, 108 (14), pp. 4248-4259
  • Papp, S., Vanderkooi, J.M., Tryptophan Phosphorescence at Room Temperature As a Tool to Study Protein Structure and Dynamics (1989) Photochem. Photobiol., 49 (6), pp. 775-784
  • Creed, D., The Photophysics and Photochemistry of the near-UV Absorbing Amino Acids - I. Tryptophan and Its Simple Derivatives (1984) Photochem. Photobiol., 39 (4), pp. 537-562
  • Bent, D.V., Hayon, E., Excited State Chemistry of Aromatic Amino Acids and Related Peptides. 111. Tryptophan (1975) J. Am. Chem. Soc., 97 (10), pp. 2612-2619
  • Robbins, R.J., Fleming, G.R., Beddard, G.S., Robinson, G.W., Thistlethwaite, P.J., Woolfe, G.J., Photophysics of Aqueous Tryptophan: PH and Temperature Effects (1980) J. Am. Chem. Soc., 102 (20), pp. 6271-6279
  • Szabo, A.G., Rayner, D.M., Fluorescence Decay of Tryptophan Conformers in Aqueous Solution (1980) J. Am. Chem. Soc., 102, pp. 554-563
  • Petrich, J.W., Chang, M.C., McDonald, D.B., Fleming, G.R., On the Origin of Nonexponential Fluorescence Decay in Tryptophan and Its Derivatives (1983) J. Am. Chem. Soc., 105, pp. 3824-3832
  • Saito, I., Sugiyama, H., Yamamoto, A., Muramatsu, S., Matsuura, T., Photoinduced Reactions. 158. Photochemical Hydrogen-Deuterium Exchange Reaction of Tryptophan. The Role of Nonradiative Decay of Singlet Tryptophan (1984) J. Am. Chem. Soc., 106 (15), pp. 4286-4287
  • Chen, Y., Liu, B., Barkley, M.D., Trifluoroethanol Quenches Indole Fluorescence by Excited-State Proton Transfer (1995) J. Am. Chem. Soc., 117, pp. 5608-5609
  • Yu, H.-T., Colucci, W.J., McLaughlin, M.L., Barkley, M.D., Fluorescence Quenching in Indoles by Excited-State Proton Transfer (1992) J. Am. Chem. Soc., 114, pp. 8449-8454
  • Rizzo, T.R., Park, Y.D., Peteanu, L.A., Levy, D.H., The Electronic Spectrum of the Amino Acid Tryptophan in the Gas Phase (1986) J. Chem. Phys., 84 (5), pp. 2534-2541
  • Philips, L.A., Webb, S.P., Martinez III, S.J.., Fleming, G.R., Levy, D.H., Time-Resolved Spectroscopy of Tryptophan Conformers in a Supersonic Jet (1988) J. Am. Chem. Soc., 110, pp. 1352-1355
  • Boyarkin, O.V., Mercier, S.R., Kamariotis, A., Rizzo, T.R., Electronic Spectroscopy of Cold, Protonated Tryptophan and Tyrosine (2006) J. Am. Chem. Soc., 128, pp. 2816-2817
  • Kang, H., Dedonder-Lardeux, C., Jouvet, C., Gregoire, G., Desfrancois, C., Schermann, J.P., Barat, M., Fayeton, J.A., Control of Bond-Cleaving Reactions of Free Protonated Tryptophan Ion by Femtosecond Laser Pulses (2005) J. Phys. Chem. A, 109 (11), pp. 2417-2420
  • Kang, H., Jouvet, C., Dedonder-Lardeux, C., Martrenchard, S., Gregoire, G., Desfrancois, C., Schermann, J.P., Fayeton, J.A., Ultrafast Deactivation Mechanisms of Protonated Aromatic Amino Acids Following UV Excitation (2005) Phys. Chem. Chem. Phys., 7 (2), pp. 394-398
  • Rizzo, T.R., Stearns, J.A., Boyarkin, O.V., Spectroscopic Studies of Cold, Gas-Phase Biomolecular Ions (2009) Int. Rev. Phys. Chem., 28 (3), pp. 481-515
  • Lepere, V., Lucas, B., Barat, M., Fayeton, J., Picard, V., Jouvet, C., Carcabal, P., Fujii, A., Comprehensive Characterization of the Photodissociation Pathways of Protonated Tryptophan (2007) J. Chem. Phys., 127 (13), p. 134313
  • Lucas, B., Barat, M., Fayeton, J., Perot, M., Jouvet, C., Gregoire, G., Nielsen, S., Mechanisms of photoinduced Cα-Cβ bond breakage in protonated aromatic amino acids (2008) J. Chem. Phys., 128 (16), p. 164302
  • Blancafort, L., Gonzalez, D., Olivucci, M., Robb, M.A., Quenching of Tryptophan 1(π,π*) Fluorescence Induced by Intramolecular Hydrogen Abstraction via an Aborted Decarboxylation Mechanism (2002) J. Am. Chem. Soc., 124, pp. 6398-6406
  • Gregoire, G., Jouvet, C., Dedonder, C., Sobolewski, A.L., Ab Initio Study of the Excited-State Deactivation Pathways of Protonated Tryptophan and Tyrosine (2007) J. Am. Chem. Soc., 129, pp. 6223-6231
  • Sharma, D., Léonard, J., Haacke, S., Ultrafast Excited-State Dynamics of Tryptophan in Water Observed by Transient Absorption Spectroscopy (2010) Chem. Phys. Lett., 489, pp. 99-102
  • Wang, X.-B., Wang, L.-S., Development of a Low-Temperature Photoelectron Spectroscopy Instrument Using an Electrospray Ion Source and a Cryogenically Controlled Ion Trap (2008) Rev. Sci. Instrum., 79 (7), p. 073108
  • Choi, C.M., Choi, D.H., Kim, N.J., Heo, J., Effective Temperature of Protonated Tyrosine Ions in a Cold Quadrupole Ion Trap (2012) Int. J. Mass Spectrom., 314, pp. 18-21
  • Kamrath, M.Z., Garand, E., Jordan, P., Leavitt, C.M., Wolk, A.B., Van Stipdonk, M.J., Miller, S.J., Johnson, M.A., Vibrational Characterization of Simple Peptides Using Cryogenic Infrared Photodissociation of H2-Tagged, Mass-Selected Ions (2011) J. Am. Chem. Soc., 133 (16), pp. 6440-6448
  • Andersen, J.U., Hvelplund, P., Nielsen, S.B., Tomita, S., Wahlgreen, H., Møller, S.P., Pedersen, U.V., Jørgensen, T.J.D., The Combination of an Electrospray Ion Source and an Electrostatic Storage Ring for Lifetime and Spectroscopy Experiments on Biomolecules (2002) Rev. Sci. Instrum., 73 (3), pp. 1284-1287
  • Ahlrichs, R., Bar, M., Haser, M., Horn, H., Kolmel, C., Electronic-Structure Calculations on Workstation Computers: The Program System TURBOMOLE (1989) Chem. Phys. Lett., 162, pp. 165-169
  • Weigend, F., Haser, M., RI-MP2: First Derivatives and Global Consistency (1997) Theor. Chem. Acc., 97, pp. 331-340
  • Dunning, T.H., Gaussian Basis Sets for Use in Correlated Molecular Calculations. 1. The Atoms Boron through Neon and Hydrogen (1989) J. Chem. Phys., 90 (2), pp. 1007-1023
  • Western, C.M., PGOPHER, A Program for Simulating Rotational Structure, , http://pgopher.chm.bris.ac.uk, University of Bristol: Bristol, U.K. 2010; available at accessed June 2010
  • Yang, Z.B., Ruan, C., Ahmed, H., Rodgers, M.T., Probing the Potential Energy Landscape for Dissociation of Protonated Indole via Threshold Collision-Induced Dissociation and Theoretical Studies (2007) Int. J. Mass Spectrom., 265 (23), pp. 388-400
  • Sindona, G., Uccella, N., Stahl, D., Reaction Mechanisms of Gaseous Organic Ions. Part 22. Structure and Reactivity of Protonated Indole in the Gas Phase by MS/MS (1985) Int. J. Mass Spectrom. Ion Process, 63, pp. 49-58
  • Corval, M., An Electron Impact Study of HCN Elimination from Indole by Use of 13C Labelling (1981) Org. Mass Spectrom., 16 (10), pp. 444-447
  • Somers, K.R.F., Kryachko, E.S., Ceulemans, A., Theoretical Study of Indole: Protonation, Indolyl Radical, Tautomers of Indole, and Its Interaction with Water (2004) Chem. Phys., 301, pp. 61-79
  • Otero, N., Gonzalez Moa, M.J., Mandado, M., Mosquera, R.A., QTAIM Study of the Protonation of Indole (2006) Chem. Phys. Lett., 428, pp. 249-254
  • Hunter, E.P., Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update (1998) J. Phys. Chem. Ref. Data, 27 (3), pp. 413-656
  • Arnold, S., Sulkes, M., Fluorescence Lifetimes of Jet-Cooled Carbonyl-Substituted Indoles. Evidence of Intramolecular Charge Transfer Quenching (1992) Chem. Phys. Lett., 200 (12), pp. 125-129
  • Hager, J.W., Demmer, D.R., Wallace, S.C., Electronic Spectra of Jet-Cooled Indoles: Evidence for the 1La State (1987) J. Phys. Chem., 91 (6), pp. 1375-1382
  • Alata, I., Omidyan, R., Broquier, M., Dedonder, C., Dopfer, O., Jouvet, C., Effect of Protonation on the Electronic Structure of Aromatic Molecules: NaphthaleneH+ (2010) Phys. Chem. Chem. Phys., 12 (43), pp. 14456-14458
  • Alata, I., Omidyan, R., Dedonder, C., Broquier, M., Jouvet, C., Electronically Excited States of Protonated Aromatic Molecules: Benzaldehyde (2009) Phys. Chem. Chem. Phys., 11 (48), pp. 11479-11486
  • Pino, G.A., Oldani, A.N., Marceca, E., Fujii, M., Ishiuchi, S.-I., Miyazaki, M., Broquier, M., Jouvet, C., Excited State Hydrogen Transfer Dynamics in Substituted Phenols and Their Complexes with Ammonia: ππ*-πσ* Energy Gap Propensity and ortho -Substitution Effect (2010) J. Chem. Phys., 133, p. 124313
  • Sakota, K., Jouvet, C., Dedonder, C., Fujii, M., Sekiya, H., Excited-State Triple-Proton Transfer in 7-Azaindole(H2O) 2 and Reaction Path Studied by Electronic Spectroscopy in the Gas Phase and Quantum Chemical Calculations (2010) J. Phys. Chem. A, 114, pp. 11161-11166
  • Send, R., Kuehn, M., Furche, F., Assessing Excited State Methods by Adiabatic Excitation Energies (2011) J. Chem. Theory Comput., 7 (8), pp. 2376-2386
  • Wilson Jr., E.B., The Normal Modes and Frequencies of Vibration of the Regular Plane Hexagon Model of the Benzene Molecule (1934) Phys. Rev., 45, pp. 706-714
  • Alata, I., Broquier, M., Dedonder, C., Jouvet, C., Marceca, E., Electronic Excited States of Protonated Aromatic Molecules: Protonated Fluorene (2012) Chem. Phys., 393 (1), pp. 25-31
  • Dedonder-Lardeux, C., Grosswasser, D., Jouvet, C., Martrenchard, S., Dissociative Hydrogen Transfer in Indole-(NH3) n Clusters (2001) PhysChemComm., 4, pp. 21-23
  • Sobolewski, A.L., Domcke, W., Dedonder-Lardeux, C., Jouvet, C., Excited-State Hydrogen Detachment and Hydrogen Transfer Driven by Repulsive 1πσ* States: A New Paradigm for Nonradiative Decay in Aromatic Biomolecules (2002) Phys. Chem. Chem. Phys., 4, pp. 1093-1100

Citas:

---------- APA ----------
Alata, I., Bert, J., Broquier, M., Dedonder, C., Feraud, G., Grégoire, G., Soorkia, S.,..., Jouvet, C. (2013) . Electronic spectra of the protonated indole chromophore in the gas phase. Journal of Physical Chemistry A, 117(21), 4420-4427.
http://dx.doi.org/10.1021/jp402298y
---------- CHICAGO ----------
Alata, I., Bert, J., Broquier, M., Dedonder, C., Feraud, G., Grégoire, G., et al. "Electronic spectra of the protonated indole chromophore in the gas phase" . Journal of Physical Chemistry A 117, no. 21 (2013) : 4420-4427.
http://dx.doi.org/10.1021/jp402298y
---------- MLA ----------
Alata, I., Bert, J., Broquier, M., Dedonder, C., Feraud, G., Grégoire, G., et al. "Electronic spectra of the protonated indole chromophore in the gas phase" . Journal of Physical Chemistry A, vol. 117, no. 21, 2013, pp. 4420-4427.
http://dx.doi.org/10.1021/jp402298y
---------- VANCOUVER ----------
Alata, I., Bert, J., Broquier, M., Dedonder, C., Feraud, G., Grégoire, G., et al. Electronic spectra of the protonated indole chromophore in the gas phase. J Phys Chem A. 2013;117(21):4420-4427.
http://dx.doi.org/10.1021/jp402298y