Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In this work, a new approach to studying coupling pathways for the Fermi contact term of NMR spin-spin coupling constants (SSCCs) is presented. It is based on the known form of propagating the Fermi hole through a canonical molecular orbital (CMO). It requires having an adequate spatial description of the relevant canonical molecular orbitals, which are obtained by expanding CMOs in terms of natural bond orbitals (NBOs). For detecting the relevant contributions of CMOs to a given Fermi contact (FC) pathway, the description of the FC in terms of the triplet polarization propagator (PP) is used. To appreciate the potential of this approach, dubbed FCCP-CMO (Fermi contact coupling pathways-CMO), it is applied to analyze the through-space transmission of the FC term of JPP SSCCs by overlap of the P lone pairs. This method can be applied using well-known quantum chemistry software without any further modification, which makes it appealing for use as a complement to SSCC measurements by NMR spectroscopy. © 2010 American Chemical Society.

Registro:

Documento: Artículo
Título:Analysis of canonical molecular orbitals to identify fermi contact coupling pathways. 1. Through-space transmission by overlap of 31P lone Pairs
Autor:Contreras, R.H.; Gotelli, G.; Ducati, L.C.; Barbosa, T.M.; Tormena, C.F.
Filiación:Department of Physics, FCEyN, University of Buenos Aires, Buenos Aires, Argentina
CONICET, Buenos Aires, Argentina
Department of Pharmaceutical Technology, FFyB, University of Buenos Aires, Buenos Aires, Argentina
Organic Chemistry Department, Chemistry Institute, University of Campinas, P.O. Box 6154, 13084-971 Campinas, São Paulo, Brazil
Palabras clave:Fermi contact; Fermi contact term; Fermi holes; Lone pair; Natural bond orbital; New approaches; NMR spectroscopy; Space transmission; Spatial descriptions; Spin-spin coupling constants; Chemical bonds; Molecular modeling; Molecular orbitals; Nuclear magnetic resonance; Nuclear magnetic resonance spectroscopy; Spin dynamics; Fermions; organophosphorus compound; phosphorus; phosphorus derivative; algorithm; article; chemical structure; chemistry; conformation; methodology; nuclear magnetic resonance spectroscopy; physical chemistry; quantum theory; Algorithms; Magnetic Resonance Spectroscopy; Models, Molecular; Molecular Conformation; Organophosphorus Compounds; Phosphorus; Phosphorus Compounds; Physicochemical Phenomena; Quantum Theory
Año:2010
Volumen:114
Número:2
Página de inicio:1044
Página de fin:1051
DOI: http://dx.doi.org/10.1021/jp908970f
Título revista:Journal of Physical Chemistry A
Título revista abreviado:J Phys Chem A
ISSN:10895639
CODEN:JPCAF
CAS:phosphorus, 7723-14-0; Organophosphorus Compounds; Phosphorus, 7723-14-0; Phosphorus Compounds
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10895639_v114_n2_p1044_Contreras

Referencias:

  • Ramsey, N.F., (1953) Phys. Rev, 91, p. 303
  • Soncini, A., Lazzeretti, P., (2003) J. Chem. Phys, 119, p. 1343
  • Castillo, N., Matta, C.F., Boyd, R.J., (2005) J. Chem. Inf. Model, 45, p. 354
  • Contreras, R.H., Esteban, A.L., Díez, E., Head, N.J., Della, E.W., (2006) Mol. Phys, 104, p. 485
  • dos Santos, F.P., Tormena, C.F., Contreras, R.H., Rittner, R., Magalhães, A., (2008) Masn. Reson. Chem, 46, p. 107
  • Pérez, C., Suardiaz, R., Ortiz, P.J., Crespo-Otero, R., Bonetto, G.M., Gavín, J.A., Garcia de la Vega, J.M., Contreras, R.H., (2008) Magn. Reson. Chem, 46, p. 846
  • Contreras, R.H., Suardiaz, R., Pérez, C., Crespo-Otero, R., SanFabián, J., García de la Vega, J.M., (2008) J. Chem. Theory Commit, 4, p. 1494
  • Gauze, G.F., Basso, E.A., Contreras, R.H., Tormena, C.F., (2009) J. Phys. Chem. A, 113, p. 2647
  • Reed, A.E., Curtiss, L.A., Weinhold, F., (1988) Chem. Rev, 88, p. 899
  • Weinhold, F., (1998) Encyclopedia of Computational Chemistry, 3, p. 1792. , Schleyer, P. v. R, Ed, Wiley: New York
  • Glendening, E.D., Badenhoop, J.K., Reed, A.E., Carpenter, J.E., Bohmann, J.A., Morales, C.M., Weinhold, F., (2001) NBO 5.0, , Theoretical Chemistry Institute, University of Wisconsin: Madison, WI
  • Diz, A.C., Contreras, R.H., Natiello, M.A., Gavarini, H.O., (1985) J. Comput. Chem, 6, p. 647
  • Giribet, C.G., Ruiz de Azúia, M.C., Contreras, R.H., Lobayan de Bonczok, R., Aucar, G.A., Góimez, S., (1993) J. Mol. Struct, 300, p. 467
  • Engelmann, A.R., Contreras, R.H., (1983) Int. J. Quantum Chem, 23, p. 1033
  • Malkina, O. L.; Malkin, V. G. Ansew. Chem., Int. Ed. 2003, 42, 4335; Petzold, H., Gorls, H., Weigand, W., (2007) J. Orsanomet. Chem, 692, p. 2736
  • Carty, A.J., Johnson, D.K., Jacobson, S.E., (1979) J. Am. Chem. Soc, 101, p. 5612
  • Grim, S.O., Smith, P.H., Colquhoun, I.J., McFarlane, W., (1980) Inors. Chem, 19, p. 3195
  • McFarlane, H.C.E., McFarlane, W., (1999) Polyhedron, 18, p. 2117
  • Karaçara, A., Freytaga, M., Thönnessena, H., Omelanczukb, J., Jonesa, P.G., Bartscha, R., Schmutzler, R.Z., (2000) Anors. Alls. Chem, 626, p. 2361
  • Ganesamoorthy, C., Balakrishna, M.S., Mague, J.T., Tuononen, H.M., (2008) Inors. Chem, 47, p. 7035
  • Hierso, J.-C., Evrard, D., Lucas, D., Richard, P., Cattey, H., Hanquet, B., Meunier, P., (2008) J. Orsanomet. Chem, 693, p. 574
  • Beauperin, M., Fayad, E., Amardeil, R., Cattey, H., Richard, P., Brandès, S., Meunier, P., Hierso, J.-C., (2008) Orsanometallics, 27, p. 1506
  • Thomas, D.A., Ivanov, V.V., Butler, I.R., Horton, P.N., Meunier, P., Hierso, J.-C., (2008) Inors. Chem, 47, p. 1607
  • Smaliy, R.V., Beaupérin, M., Cattey, H., Meunier, P., Hierso, J.-C., (2009) Orsanometallics, 28, p. 3152
  • Zschynke, A., Mügge, C., Meyer, H., Jurkschat, K., (1983) Ore. Maen. Reson, 21, p. 315
  • Quin, L.D., (1981) The Heterocyclic Chemistry of Phosphorus, , Wiley Interscience: New York
  • Gorenstein, D.G., (1983) Proe. NMR Spectrosc, 16, p. 1
  • Ebsworth, E.A.V., Rankin, D.W.H., Wright, J.G., (1979) J. Chem. Soc., Dalton Trans, p. 1065
  • Gavarini, H.O., Natiello, M.A., Contreras, R.H., (1985) Theor. Chim. Acta, 68, p. 171
  • Contreras, R.H., Peralta, J.E., (2000) Proe. NMR Spectrosc, 37, p. 321
  • Contreras, R.H., Barone, V., Facelli, J.C., Peralta, J.E., (2003) Annu. Rep. NMR Spectrosc, 51, p. 167
  • Oddershede, J. Polarization Propagator Calculations. In Advances in Quantum Chemistry;Lowdin, P.-O., Ed.; Academic Press: New York, 1978; 11, p 275; Diz, A.C., Giribet, C.G., Ruizde Azúa, M.C., Contreras, R.H., (1990) Int. J. Quantum Chem, 37, p. 663
  • Contreras, R.H., Ruiz de Azúa, M.C., Giribet, C.G., Aucar, G.A., Lobayan de Bonczok, R., (1993) J. Mol. Struct. (THEOCHEM), 284, p. 249
  • Ruiz de Azúa, M.C., Giribet, C.G., Vizioli, C.V., Contreras, R.H., (1998) J. Mol. Struct. (THEOCHEM), 433, p. 141
  • Giribet, C.G., Ruiz de Azúa, M.C., (2005) J. Phys. Chem. A, 109, p. 11980
  • Giribet, C.G., Ruiz de Azúa, M.C., (2006) J. Phys. Chem. A, 110, p. 11575
  • Giribet, C.G., Ruiz de Azúa, M.C., (2008) J. Phys. Chem A, 112, p. 4386
  • Kohn, W., Sham, L.J., (1965) Phys. Rev. A, 140, p. 1133
  • Cremer, D., Gräfenstein, J., (2007) Phys. Chem. Chem. Phys, 9, p. 2791. , and references cited therein
  • Provasi, P.F., Sauer, S.P.A., (2009) Phys. Chem. Chem. Phys, 11, p. 3987
  • Contreras, R.H., Esteban, A.L., Díez, E., Della, E.W., Lochert, I.J., dos Santos, F.P., Tormena, C.F., (2006) J. Phys. Chem., A, 110, p. 4266
  • Contreras, R.H., Esteban, A.L., Díez, E., Lochert, I.J., Della, E.W., Tormena, C.F., (2007) Maen. Reson. Chem, 45, p. 572
  • Cunha Neto, A., dos Santos, F.P., Contreras, R.H., Rittner, R., Tormena, C.F., (2008) J. Phys. Chem. A, 112, p. 11956
  • Krivdin, L.B., Contreras, R.H., (2007) Annu. Rep. NMR Spectrosc, 61, p. 133
  • Frisch, M. J, Trucks, G. W, Schlegel, H. B, Scuseria, G. E, Robb, M. A, Cheeseman, J. R, Montgomery, J. A, Jr, Vreven, T, Kudin, K. N, Burant, J. C, Millam, J. M, Iyengar, S. S, Tomasi, J, Barone, V, Mennucci, B, Cossi, M, Scalmani, G, Rega, N, Petersson, G. A, Nakatsuji, H, Hada, M, Ehara, M, Toyota, K, Fukuda, R, Hasegawa, J, Ishida, M, Nakajima, T, Honda, Y, Kitao, O, Nakai, H, Klene, M, Li, X, Knox, J. E, Hratchian, H. P, Cross, J. B, Bakken, V, Adamo, C, Jaramillo, J, Gomperts, R, Stratmann, R. E, Yazyev, O, Austin, A. J, Cammi, R, Pomelli, C, Ochterski, J. W, Ayala, P. Y, Morokuma, K, Voth, G. A, Salvador, P, Dannenberg, J. J, Zakrzewski, V. G, Dapprich, S, Daniels, A. D, Strain, M. C, Farkas, O, Malick, D. K, Rabuck, A. D, Raghavachari, K, Foresman, J. B, Ortiz, J. V, Cui, Q, Baboul, A. G, Clifford, S, Cioslowski, J, Stefanov, B. B, Liu, G, Liashenko, A, Piskorz, P, Komaromi, I, Martin, R. L, Fox, D. J, Keit; Møller, C., Plesset, M.S., (1934) Phys. Rev, 46, p. 618
  • Dunning, T.H., Peterson, K.A., Wonn, D.E., (1998) Encyclopedia of Computational Chemistry, 1, p. 88. , Wiley: New York
  • Becke, A.D., (1988) Phys. Rev. A, 38, p. 3098
  • Becke, A.D., (1993) J. Chem. Phys, 98, p. 5648
  • Lee, C.T., Yang, W.T., Parr, R.G., (1988) Phys. Rev. B, 37, p. 785
  • Kutzelnigg, W., Fleischer, U., Schindler, M., The IGLO-Method: Ab-Initio Calculation and Interpretation of NMR Chemical Shifts and Magnetic Susceptibilities (1990) NMR Basic Principles and Proeress, 23, pp. 165-262. , SpringerVerlag: Berlin
  • Sychrovshý, V., Grafenstein, J., Cremer, D., (2000) J. Chem. Phys, 113, p. 3530
  • Jensen, F., (2006) J. Chem. Theory Comput, 2, p. 1360
  • Carty, A.J., Johnson, D.K., Jacobson, S.E., (1979) J. Am. Chem. Soc, 101, p. 5612
  • Rudolph, R.W., Newmark, R.A., (1970) J. Am. Chem. Soc, 92, p. 1195

Citas:

---------- APA ----------
Contreras, R.H., Gotelli, G., Ducati, L.C., Barbosa, T.M. & Tormena, C.F. (2010) . Analysis of canonical molecular orbitals to identify fermi contact coupling pathways. 1. Through-space transmission by overlap of 31P lone Pairs. Journal of Physical Chemistry A, 114(2), 1044-1051.
http://dx.doi.org/10.1021/jp908970f
---------- CHICAGO ----------
Contreras, R.H., Gotelli, G., Ducati, L.C., Barbosa, T.M., Tormena, C.F. "Analysis of canonical molecular orbitals to identify fermi contact coupling pathways. 1. Through-space transmission by overlap of 31P lone Pairs" . Journal of Physical Chemistry A 114, no. 2 (2010) : 1044-1051.
http://dx.doi.org/10.1021/jp908970f
---------- MLA ----------
Contreras, R.H., Gotelli, G., Ducati, L.C., Barbosa, T.M., Tormena, C.F. "Analysis of canonical molecular orbitals to identify fermi contact coupling pathways. 1. Through-space transmission by overlap of 31P lone Pairs" . Journal of Physical Chemistry A, vol. 114, no. 2, 2010, pp. 1044-1051.
http://dx.doi.org/10.1021/jp908970f
---------- VANCOUVER ----------
Contreras, R.H., Gotelli, G., Ducati, L.C., Barbosa, T.M., Tormena, C.F. Analysis of canonical molecular orbitals to identify fermi contact coupling pathways. 1. Through-space transmission by overlap of 31P lone Pairs. J Phys Chem A. 2010;114(2):1044-1051.
http://dx.doi.org/10.1021/jp908970f