Artículo

Hoijemberg, P.A.; Zerbs, J.; Reichardt, C.; Schwarzer, D.; Chesta, C.A.; Schroeder, J.; Aramendía, P.F. "Photophysics and photochemistry of an asymmetrically substituted diazene: A suitable cage effect probe" (2009) Journal of Physical Chemistry A. 113(19):5531-5539
La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The photophysics and photochemistry of (l-biphenyl-4-yl-l-methyl-ethyl)- tert-butyl diazene were thoroughly studied by laser flash photolysis from the picosecond to the microsecond time domain. The compound has favorable features as a radical photoinitiator and as a probe for cage effect studies in liquids, supercritical fluids, and compressed gases. The biphenyl moiety acts as an antenna efficiently transferring electronic energy to the dissociative 1n,π* state centered on the azo moiety. By picosecond experiments irradiating at the biphenyl-and at the azo-centered transitions, we were able to demonstrate this fact as well as determine a lifetime of 0.7 ps for the buildup of 1-biphenyl-4-y1-1-methyl-ethyl radicals (BME ·). The sum of in-cage reaction rate constants of BME· radicals by combination and disproportionation is 5 × 1010 s-1. The free radical quantum yield in solution is 0.21 (ØBME·) in n-hexane at room temperature, whereas the dissociation quantum yield approaches 50%. The symmetric ketone, 2,4-bis-bipheny1-4-y1-2,4-dimethyl-pentan-2-one, was used as a reference compound for the production and reaction of BME· radicals. Transient IR measurements show CO stretching bands of the excited 3π, π* and 1n,π* states but no dissociation up to 0.5 ns. A fluorescence lifetime of 1 ns for this ketone is consistent with this observation. By transient actinometry and kinetic decays in the microsecond time range, we measured εBME· = (2.3 ± 0.2) × 104 M-1 cm-1 at 325 nm and a second-order rate constant of 5.8 × 109 M -1s-1 for the consumption of BME· radicals. © 2009 American Chemical Society.

Registro:

Documento: Artículo
Título:Photophysics and photochemistry of an asymmetrically substituted diazene: A suitable cage effect probe
Autor:Hoijemberg, P.A.; Zerbs, J.; Reichardt, C.; Schwarzer, D.; Chesta, C.A.; Schroeder, J.; Aramendía, P.F.
Filiación:INQUIMAE and Departamento de Quimica Inorganica, Analitica y Quimica Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, 1428 Buenos Aires, Argentina
Institut für Physikalische Chemie, Georg-August Universität, Göttingen, Germany
Department of Spectroscopy and Photochemical Kinetics, Max-Planck-Institute of Biophysical Chemistry, 37070 Göttingen, Germany
Departamento de Química, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, Universidad Nacional de Río Cuarto, 5800-Río Cuarto, Argentina
Deutsche Gesellschaft für Luft- and Raumfahrt, Stuttgart, Germany
Palabras clave:Biphenyl moiety; C-O stretching; Cage effect; Compressed gas; Diazene; Disproportionation; Electronic energies; Ethyl radicals; Fluorescence lifetimes; IR measurements; Laser flash photolysis; N-Hexane; NO dissociation; Photo-initiator; Photophysics; Picosecond; Reference compounds; Room temperature; Second-order rate constants; Time domain; Time range; Effluent treatment; Hexane; Ketones; Photodissociation; Photolysis; Probes; Sulfur compounds; Supercritical fluids; Rate constants
Año:2009
Volumen:113
Número:19
Página de inicio:5531
Página de fin:5539
DOI: http://dx.doi.org/10.1021/jp809315u
Título revista:Journal of Physical Chemistry A
Título revista abreviado:J Phys Chem A
ISSN:10895639
CODEN:JPCAF
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10895639_v113_n19_p5531_Hoijemberg

Referencias:

  • Engel, P.S., (1980) Chem. Rev, 80, pp. 99-150
  • Adam, W., Oppenlander, T., (1986) Angew. Chem. Int. Ed. Ensl, 25, pp. 661-672
  • Engel, P.S., Ying, Y., He, S., (2003) Macromolecules, 36, pp. 3821-3825
  • Rabek, J.F., (1987) Mechanisms of Photophysical Processes and Photochemical Reactions in Polymers, , Wiley & Sons: New York
  • Diau, E.W.-G., Abou-Zied, O.K., Scala, A.A., Zewail, A.H., (1998) J. Am. Chem. Soc, 120, pp. 3245-3246
  • Diau, E.W.G., Zewail, A.H., (2003) Chem PhysChem, 4, pp. 445-456
  • Fogel, L.D., Steel, C., (1976) J. Am. Chem. Soc, 98, pp. 4859-4867
  • Engel, P.S., Wu, H., Smith, W.B., (2001) Org. Lett, 3, pp. 3145-3148
  • Boate, D.R., Scaiano, J.C., (1989) Tetrahedron Lett, 30, pp. 4633-4636
  • Scott, T.W., Doubleday Jr., C., (1991) Chem. Phys. Lett, 178, pp. 9-18
  • Engel, P.S., Steel, C., (1973) Acc. Chem. Res, 6, pp. 275-281
  • Gould, I.R., Zimmt, M.B., Turro, N.J., Baretz, B.H., Lehr, G.F., (1985) J. Am. Chem. Soc, 107, pp. 4607-4612
  • Chesta, C.A., Mohanty, J., Nau, W.M., Bhattacharjee, U., Weiss, R.G., (2007) J. Am. Chem. Soc, 129, pp. 5012-5022
  • Kleinman, M.H., Shevchenko, T., Bohne, C., (1998) Photochem. Photobiol, 67, pp. 198-205
  • O'Shea, K.E., Combes, J.R., Fox, M.A., Johnston, J.P., (1991) Photochem. Photobiol, 54, pp. 571-576
  • Turro, N.J., Cheng, C.C., Lei, X.G., Flanigen, E.M., (1985) J. Am. Chem. Soc, 107, pp. 3739-3741
  • Ramamurthy, V., Corbin, D.R., Turro, N.J., Zhang, Z., Garcia-Garibay, M.A.J., (1991) Org. Chem, 56, pp. 255-261
  • By asymmetrically substituted compound, when applied to diazenes or ketones, we mean here a diazene or carbonyl group bound to two different groups on either side, yielding two different free alkyl radicals by photolysis; Hoijemberg, P.A., Zerbs, J., Japas, M.L., Chesta, C.A., Schroeder, J., Aramendía, P.F., Photolysis of an asymmetrically substituted diazene in supercritical fluids and compressed gases: A cage effect study J. Phys. Chem. A, , in press
  • Hoijemberg, P.A., Karlen, S., Sanramé, C.N., Aramendía, P.F., García-Garibay, M.A., Photochem. Photobiol. Sci, , http://dx.doi.org/10.1039/b902272d, published online March 30
  • Bhandari, S., Ray, S., (1998) Synth. Commun, 28, pp. 765-771
  • Bertolotti, S.G., Previtali, C.M., (1997) J. Photochem. Photobiol. A, 103, pp. 115-119
  • Carmichael, I., Hug, G.L.J., (1986) Phys. Chem. Ref. Data, 15, pp. 1-250
  • Grimm, C., Kling, M., Schroeder, J., Troe, J., Zerbs, J., (2003) Israel J. Chem, 43, pp. 305-317
  • Kaindl, R.A., Wurm, M., Reimann, K., Hamm, P., Weiner, A.M., Woerner, M., (2000) J. Opt. Soc. Am. B, 17, pp. 2086-2094
  • Hamm, P., Kaindl, R.A., Stenger, J., (2000) Opt. Lett, 25, pp. 1798-1800
  • Bergamini, G., Ceroni, P., Balzani, V., Villavieja, M.D.M., Kandre, R., Zhun, I., Lukin, O., (2006) ChemPhysChem, 7, pp. 1980-1984
  • Chatgilialoglu, C., Ingold, K.U., Lusztyk, J., Nazran, A.S., Scaiano, J.C., (1983) Organometallics, 2, pp. 1332-1335
  • Rigorously, the rate of consumption of BME-radicals in Scheme 1 is -d[BME]/dt = 2k(1-fesc) [BME]2+kAB(1-f esc).[t-Bu] [BHE](3) k2comb = -1/[BME]2[BME]/dt = 2 kBB(1-fesc)+kAB(1-fesc) [t-Bu]/[BME] (4) If we make the assumption that rate constants for the radical reactions and cage factors for the different radical encounters are all equal, then the concentrations of the two radicals are equal, and we arrive at the expression given in the text; Bensasson, R., Land, E.J., (1971) Trans. Faraday Soc, 67, pp. 1904-1915
  • Bensasson, R., Amand, B., (1975) Chem. Phys. Lett, 34, pp. 44-48
  • Kato, C., Hamaguchi, H.-O., Tasumi, M., (1985) Chem. Phys. Lett, 120, pp. 183-187
  • Scott, T.W., Liu, S.N.J., (1989) Phys. Chem, 93, pp. 1393-1396
  • Srivastava, S.; Yourd, E.; E.; Toscano, J. P. J. Am. Chem. Soc. 1998, 120, 6173-6174; Tahara, T., Hamaguchi, H., Tasumi, M.J., (1987) Phys. Chem, 91, pp. 5875-5880
  • Langkilde, F.W., Bajdor, K., Wilbrandt, R., (1992) Chem. Phys. Lett, 193, pp. 169-175
  • Silva, C.R., Reilly, J.P.J., (1996) Phys. Chem, 100, pp. 17111-17123
  • Adam, W., Trofimov, A.V., (2003) Acc. Chem. Res, 36, pp. 571-579
  • We assume that there is no difference in the photochemistry of the diazene between 254 nm excitation (steady-state experiments where f- diazenewas determined) and 266 nm excitation nanosecond pulses used to obtain the data in Figure 4; Shida, T., (1988) Electronic Absorption Spectra of Radical Ions, , Elsevier: Amsterdam
  • Claridge, R.F.C., Fischer, H., (1983) J. Phys. Chem, 87, pp. 1960-1967
  • Saltiel, J., Atwater, B.W., (1988) Adv. Photochem, 14, pp. 1-90
  • Turro, N. J. Chapter 9. In Modern Molecular Photochemistry; University Science Books: Mill Valley, CA, 1991; p 314

Citas:

---------- APA ----------
Hoijemberg, P.A., Zerbs, J., Reichardt, C., Schwarzer, D., Chesta, C.A., Schroeder, J. & Aramendía, P.F. (2009) . Photophysics and photochemistry of an asymmetrically substituted diazene: A suitable cage effect probe. Journal of Physical Chemistry A, 113(19), 5531-5539.
http://dx.doi.org/10.1021/jp809315u
---------- CHICAGO ----------
Hoijemberg, P.A., Zerbs, J., Reichardt, C., Schwarzer, D., Chesta, C.A., Schroeder, J., et al. "Photophysics and photochemistry of an asymmetrically substituted diazene: A suitable cage effect probe" . Journal of Physical Chemistry A 113, no. 19 (2009) : 5531-5539.
http://dx.doi.org/10.1021/jp809315u
---------- MLA ----------
Hoijemberg, P.A., Zerbs, J., Reichardt, C., Schwarzer, D., Chesta, C.A., Schroeder, J., et al. "Photophysics and photochemistry of an asymmetrically substituted diazene: A suitable cage effect probe" . Journal of Physical Chemistry A, vol. 113, no. 19, 2009, pp. 5531-5539.
http://dx.doi.org/10.1021/jp809315u
---------- VANCOUVER ----------
Hoijemberg, P.A., Zerbs, J., Reichardt, C., Schwarzer, D., Chesta, C.A., Schroeder, J., et al. Photophysics and photochemistry of an asymmetrically substituted diazene: A suitable cage effect probe. J Phys Chem A. 2009;113(19):5531-5539.
http://dx.doi.org/10.1021/jp809315u