Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The contribution of stereoelectronic interactions to NMR coupling constants 3JHH and 4JHH has been examined using ab initio calculations and natural bond orbital (NBO) analysis on four model compounds: ethane, propane, propene, and methylcyclopropane. The main stereoelectronic contributions to the couplings originate in three-bond (vicinal) interactions and in through-space interactions. In ethane, besides the main contribution of the σ(C-H) → σ*(C-H) interaction, other interactions present in the molecule make a decisive contribution to the angular dependence of 3J. In the H1-C-C-C-Hanti moiety of propane, 4JHH has important contributions from vicinal interactions that include the anti proton while in the H1-C-C-C-Hgauche moiety the main contributions are vicinal interactions that include H1. In alkene fragments, vicinal interactions that involve the π orbitals are the most important contributions to the couplings. Sigma vicinal interactions, which include orbitals corresponding to C-H bonds that involve either of the coupled protons, are crucial to elucidate differences between cisoid and transoid coupling constants. In the case of methylcyclopropane, the most important contributions to the coupling of the syn cyclopropyl H come from the σ(C-H) → σ*(Ccyclopropane-Ccyclopropane) and σ(Ccyclopropane-Ccyclopropane) → σ*(C-H) vicinal interactions (where the H corresponds to the non-cyclopropyl hydrogen). The concerted effect of several interactions that contribute toward a trend similar to that shown by allyl-vinyl proton couplings is in accordance with a significant π contribution of the Ccyclopropane-Ccyclopropane bond. For the anti cyclopropyl proton, vicinal interactions of the form σ(C-Hanti) → σ*(Ccyclopropane-C) and σ(Ccyclopropane-C) → σ*(C-Hanti) are the main contributors to the angular variation of the couplings, similar to what happens to the anti proton in propane. As a whole, the overall behavior of these couplings resembles that of the equivalent proton in propane. In addition, in this case there is not a unique set of interactions which accounts for the overall angular variation of 4J.

Registro:

Documento: Artículo
Título:Stereoelectronic contributions to long-range 1H-1H coupling constants
Autor:Sproviero, E.M.; Burton, G.
Filiación:Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, (C1428EHA) Buenos Aires, Argentina
Palabras clave:Natural bond orbital (NBO) analysis; Stereoelectronic interactions; Hydrogen bonds; Molecular structure; Nuclear magnetic resonance spectroscopy; Polarization; Protons; Hydrocarbons
Año:2002
Volumen:106
Número:34
Página de inicio:7834
Página de fin:7843
DOI: http://dx.doi.org/10.1021/jp020197c
Título revista:Journal of Physical Chemistry A
Título revista abreviado:J Phys Chem A
ISSN:10895639
CODEN:JPCAF
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10895639_v106_n34_p7834_Sproviero

Referencias:

  • (1999) 12th National Symposium of Organic Chemistry (XII SINAQO), 5, p. 539. , Los Cocos, Argentina, November. Abstract published in Molecules [online computer file]
  • Pople, J.A., Schneider, W.G., Bernstein, H.J., (1959) High-Resolution NMR, , McGraw-Hill: New York
  • Ramsey, N.F., (1953) Phys. Rev., 91, p. 303
  • Lemieux, R.U., Kullnig, R.K., Berstein, H.J., Schneider, W.G., (1957) J. Am. Chem. Soc., 79, p. 1005
  • Karplus, M., (1959) J. Chem. Phys., 30, p. 11
  • McConnell, H.M., (1957) J. Mol. Spectrosc., 1, p. 11
  • Hoffman, R.A., (1958) Mol. Phys., 1, p. 326
  • Barfield, M., Chakrabarti, B., (1969) Chem. Rev., 69, p. 757
  • Murrel, J.N., (1970) Prog. NMR Spectrosc., 6, p. 1
  • Günther, H., Jikeli, G., (1977) Chem. Rev., 77, p. 599
  • Kowalewski, J., (1977) Prog. NMR Spectrosc., 11, p. 1
  • Engelmann, R., Facelli, J.C., Contreras, R.H., (1981) Theor. Chim. Acta, 59, p. 17
  • Engelmann, R., Contreras, R.H., (1983) Int. J. Quantum Chem., 23, p. 1033
  • Contreras, R.H., Natiello, M.A., Scuseria, G.E., (1985) Magn. Reson. Rev., 9, p. 239
  • Contreras, R.H., Ruiz de Azúa, M.C., Giribet, C.G., Ferraro, M.B., Diz, A.C., (1989) Nuevas Tendencias-Química Teórica;, 2. , Fraga, S., Ed.; CSIC: Madrid, Chapter 16
  • Parr, W.J.E., Schaefer, T., (1980) Acc. Chem. Res., 13, p. 400
  • Dewar, M.J.S., Dougherty, R.C., (1975) The PMO Theory of Organic Chemistry, , Plenum: New York
  • Dewar, M.J.S., (1984) J. Am. Chem. Soc., 106, p. 669
  • Reed, E., Curtiss, L.A., Weinhold, F.A., (1988) Chem. Rev., 88, p. 899
  • Reed, A.E., Weinhold, F., (1991) Isr. J. Chem., 31, p. 277
  • Edison, S., Markley, J.L., Weinhold, F., (1994) J. Biomol. NMR, 4, p. 519
  • Esteban, A.L., Galache, M.P., Mora, F., Díez, E., Casanueva, J., San Fabián, J., Barone, V., Contreras, R.H., (2001) J. Phys. Chem. A, 105, p. 5298
  • Wilkens, S.J., Westler, W.M., Markley, J.L., Weinhold, F., (2001) J. Am. Chem. Soc., 123, p. 12026
  • Peralta, J.E., Contreras;, R.H., Snyder, J.P., (2000) Chem. Commun., p. 2025
  • Suarez, D., Sordo, T.L., Sordo, J.A., (1996) J. Am. Chem. Soc., 118, p. 9850
  • Salzner, U., (1995) J. Org. Chem., 60, p. 986
  • Barfield, M., (1964) J. Chem. Phys., 41, p. 3825
  • Diz, C., Ruiz de Azua, M.C., Giribet, C.G., Contreras, R.H., (1990) Int. J. Quantum Chem., 27, p. 663
  • Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Zakrzewski, V.G., Pople, J.A., (1998) Gaussian 98, Revision A.7, , Gaussian, Inc.: Pittsburgh, PA
  • Lazzeretti, P., Zanasi, R., (1982) J. Chem. Phys., 77, p. 2448
  • Lazzeretti, P., (1979) Int. J. Quantum Chem., 15, p. 181
  • Lazzeretti, P., (1979) J. Chem. Phys., 71, p. 2514
  • Contreras, R.H., Peralta, J.E., (2000) Prog. NMR Spectrosc., 37, p. 321
  • Glendening, E.D., Reed, A.E., Carpenter, J.E., Weinhold, F., NBO, version 3.1
  • Jörgensen, P., Simons, J., (1981) Second Quantization Based Methods in Quantum Chemistry, , Academic Press: New York, Chapter 6
  • Sproviero, E.M., Ferrara, A., Contreras, R.H., Burton, G., (1996) J. Chem. Soc., Perkin Trans., 2, p. 933. , and references therein
  • Karplus, M., (1960) J. Chem Phys., 33, p. 1842
  • Karplus, M., (1969) J. Chem. Phys., 50, p. 3133
  • Barfield, M., Dean, A.M., Fallick, C.J., Spear, R.J., Sternhell, S., Westerman, P.W., (1975) J. Am. Chem. Soc., 97, p. 1482

Citas:

---------- APA ----------
Sproviero, E.M. & Burton, G. (2002) . Stereoelectronic contributions to long-range 1H-1H coupling constants. Journal of Physical Chemistry A, 106(34), 7834-7843.
http://dx.doi.org/10.1021/jp020197c
---------- CHICAGO ----------
Sproviero, E.M., Burton, G. "Stereoelectronic contributions to long-range 1H-1H coupling constants" . Journal of Physical Chemistry A 106, no. 34 (2002) : 7834-7843.
http://dx.doi.org/10.1021/jp020197c
---------- MLA ----------
Sproviero, E.M., Burton, G. "Stereoelectronic contributions to long-range 1H-1H coupling constants" . Journal of Physical Chemistry A, vol. 106, no. 34, 2002, pp. 7834-7843.
http://dx.doi.org/10.1021/jp020197c
---------- VANCOUVER ----------
Sproviero, E.M., Burton, G. Stereoelectronic contributions to long-range 1H-1H coupling constants. J Phys Chem A. 2002;106(34):7834-7843.
http://dx.doi.org/10.1021/jp020197c