Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Ground (S 0 ) and first excited singlet state (S 1 ) potential energy surfaces were calculated for a series of six symmetric carbocyanines as a function of the twisting angle (θ), around a carbon - carbon bond of the polymethine chain. The surfaces were computed using AM1 semiempirical quantum mechanical calculations. Rotations around different bonds were considered in order to determine the relevant rotation for isomerization, that is, the rotation with the lowest activation energy for the isolated molecule (E 0 ). For that rotation, the computed values of E 0 are in good agreement with values extrapolated from experiments in solutions of n-primary alcohols. The same holds for the computed transition energies between both surfaces for the thermodynamically stable N isomer (θ = 0°) and the P photoisomer (θ = 180°). The effects of chain length and pattern substitution of the indoline moiety on E 0 were also analyzed for both surfaces. The shape of the potential surfaces referred as the Rullière's model holds in all cases for at least one rotational coordinate. The electrical dipole moment with respect to the center of electrical charges was calculated as a function of θ. The calculations show that the dipole moment remains almost constant except in the vicinity of θ = 90°, where a sudden increase with a sharp peak was obtained in both surfaces. This gives a simple explanation for the well-known experimental observation that the activation energy on the excited state surface is independent of solvent polarity, as the angle of the transition state is smaller than 90°. On the other hand, the transition state is at θ = 90° on the ground state, and a polarity influence is predicted. An improvement in the description of the experimental isomerization rate constants in S 0 is obtained for the two smallest carbocyanines considered when polarity contributions are included.

Registro:

Documento: Artículo
Título:AM1 study of the ground and excited state potential energy surfaces of symmetric carbocyanines
Autor:Rodríguez, J.; Scherlis, D.; Estrin, D.; Aramendía, P.F.; Negri, R.M.
Filiación:Laboratory of Thermodynamics, INQUIMAE, Ciudad Universitaria, 1428 Buenos Aires, Argentina
Laboratory of Photochemistry, INQUIMAE, Ciudad Universitaria, 1428 Buenos Aires, Argentina
Palabras clave:Activation energy; Azo dyes; Chemical bonds; Electron transitions; Isomerization; Mathematical models; Molecular dynamics; Molecular structure; Nitrogen compounds; Reaction kinetics; Thermodynamic stability; Carbocyanines; Polymethine; Potential energy; Rulliere's model; Quantum theory
Año:1997
Volumen:101
Número:37
Página de inicio:6998
Página de fin:7006
DOI: http://dx.doi.org/10.1021/jp9713569
Título revista:Journal of Physical Chemistry A
Título revista abreviado:J Phys Chem A
ISSN:10895639
CODEN:JPCAF
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10895639_v101_n37_p6998_Rodriguez

Referencias:

  • Sturmer, D.M., (1977) Synthesis and Properties of Cyanine and Related Dyes. Special Topics in Heterocyclic Chemistry, , Weissberger, A., Taylor, E. C., Eds.; John Wiley & Sons: New York
  • Sturmer, D.M., Heseltine, D.W., (1977) The Theory of the Photographic Process, Fourth Ed., , James, T. H., Ed.; Macmillan Publishing Co: New York, Chapter 8
  • Mialocq, J.C., Goujon, P., Arvis, M., (1979) J. Chim. Phys., 76, p. 1067
  • Arthurs, E.G., Bradley, D.J., Roddie, A.G., (1972) Appl. Phys. Lett., 20, p. 125
  • Waggoner, A., (1976) J. Membr. Biol., 27, p. 317
  • Waggoner, A.S., Grinvald, A., (1977) Ann. N.Y. Acad. Sci., 303, p. 217
  • Grieser, F., Lay, M., Thistlethwaite, P.J., (1985) J. Phys. Chem., 89, p. 2065
  • Van Der Auweraer, M., Van Den Zegel, M., Boens, N., De Schryver, F.C., Willig, F., (1986) J. Phys. Chem., 90, p. 1169
  • Ponterini, G., Momicchioli, F., (1991) Chem. Phys., 151, p. 111
  • Korppi-Tommola, J.E.I., Hakkarainen, A., Hukka, T., Subbi, J., (1991) J. Phys. Chem., 95, p. 8482
  • Ponterini, G., Caselli, M., (1992) Ber. Bunsen-Ges. Phys. Chem., 96, p. 564
  • Dempster, D.N., Morrow, T., Rankin, R., Thompson, G.F., (1972) J. Chem. Soc. Faraday Trans. 2, 68, p. 1479
  • Rullière, C., (1976) Chem. Phys. Lett., 43, p. 303
  • Jaraudias, J., (1980) J. Photochem., 13, p. 35
  • Velsko, S.P., Fleming, G.R., (1982) Chem. Phys., 65, p. 59
  • Berndt, K., Dürr, H., Feller, K.H.Z., (1987) Phys. Chem. Leipzig, 268, p. 250
  • Krieg, M., Redmond, R.W., (1993) Photochem. Photobiol., 57, p. 472
  • Aramendía, P.F., Negri, R.M., San Roman, E., (1994) J. Phys. Chem., 98, p. 3165
  • Magde, D., Windsor, M.W., (1974) Chem. Phys. Lett., 27, p. 31
  • Sundström, V., Gillbro, T., (1982) J. Phys. Chem., 86, p. 1788
  • Velsko, S.P., Waldeck, D.H., Fleming, G.R., (1983) J. Chem. Phys., 78, p. 249
  • Kasatani, K., Kawaski, M., Sato, H., (1984) J. Phys. Chem., 88, p. 5451
  • Awad, M.M., McCarthy, P.K., Blanchard, G.J., (1994) J. Phys. Chem., 98, p. 1454
  • Chibisov, A.K., Zakharova, G.V., Görner, H., Sogulyaev, Y.A., Mushkalo, I.L., Tolmachev, A.I., (1995) J. Phys. Chem., 99, p. 886
  • Bilmes, G.M., Tocho, J.O., Braslavsky, S.E., (1987) Chem. Phys. Lett., 134, p. 335
  • Scaffardi, L., Bilmes, G.M., Schinca, D., Tocho, J.O., (1987) Chem. Phys. Lett., 140, p. 163
  • Bilmes, G.M., Tocho, J.O., Braslavsky, S.E.J., (1988) Phys. Chem., 92, p. 5985
  • Bilmes, G.M., Tocho, J.O., Braslavsky, S.E., (1989) J. Phys. Chem., 93, p. 6696
  • Churio, M.S., Angermund, K.P., Braslavsky, S.E., (1994) J. Phys. Chem., 98, p. 1776
  • Zhu, X.R., Harris, J.M., (1990) Chem. Phys., 142, p. 301
  • Baümler, W., Penzkofer, A., (1990) Chem. Phys., 140, p. 75
  • Laitinen, E., Ruuskanen-Järvinenen, P., Rempel, U., Helenius, V., Korppî-Tommola, J.E.I., (1994) Chem. Phys. Lett., 218, p. 73
  • Hara, K., Akimoto, S., (1991) J. Phys. Chem., 95, p. 5811
  • Fleming, G.R., Waldeck, D.H., Keery, K.M., Velsko, S.P., (1984) Nato ASI Ser., Ser. C., 127, p. 67
  • Murphy, B., Sauerwein, H., Drickamer, G., Schuster, G.B., (1994) J. Phys. Chem., 98, p. 13476
  • Keery, K.M., Fleming, G.R., (1982) Chem. Phys. Lett., 93, p. 322
  • Onganer, Y., Yin, M., Bessire, D.R., Quitevis, E.L., (1993) J. Phys.Chem., 97, p. 2344
  • Ghelli, S., Ponterini, G., (1995) J. Mol. Structure, 355, p. 193
  • Baraldi, I., Carnevali, A., Momicchioli, F., Ponterini, G., (1993) Spectrochim. Acta, 49 A, p. 471
  • Kolesnikov, A.M., Mikhailenko, F.A., (1987) Usp. Khim., 56, p. 466
  • (1987) Russ. Chem. Rev., 56, p. 275
  • Zhu, S.B., Robinson, G.W., (1988) Chem. Phys. Lett., 153, p. 539
  • Dewar, M.J.S., Zoebisch, E.G., Healy, E.F., Stewart, J.J.P., (1985) J. Am. Chem. Soc., 107, p. 3902
  • Hirst, D.M., (1990) A Computational Aproach to Quantum Chemistry, , Blackwell Scientific Publications: Oxford
  • Gonzalez, M.C., San Roman, E., (1989) J. Phys. Chem., 93, p. 3536
  • Daraio, M.E., Völker, A., Aramendía, P.F., San Román, E., (1996) Langmuir, 12, p. 2932
  • Dewar, M.J.S., Reynolds, C.H., (1986) J. Comput. Chem., 7, p. 140
  • Nee, T.W., Zwanzig, F.J., (1970) J. Chem. Phys., 52, p. 6353
  • Harju, T.O., Korppi-Tommola, J.E.I., Huizer, A.H., Harmo, C.A.G.O., (1996) J. Phys. Chem., 100, p. 3592
  • Reynolds, L., Gardechi, J.A., Frankland, S.J.V., Horng, M.L., Maroncelli, M., (1996) J. Phys. Chem., 100, p. 10337
  • Negri, R.M., (1991), Ph.D. Thesis, University of Buenos Aires; Baraldi, I., Carnevali, A., Caselli, M., Momicchioli, F., Ponterini, G., Berthier, G., (1995) J. Mol. Structure: THEOCHEM, 330, p. 403
  • Michl, J., Bonacic-Koutecky, V., (1990) Electronic Aspects of Organic Photochemistry, , Wiley & Sons: New York
  • Bonacic-Koutecky, V., (1978) J. Am. Chem. Soc., 100, p. 296
  • Wong, M.W., Frisch, M.J., Wiberg, K.B., (1990) J. Am. Chem. Soc., 113, p. 4776
  • Gegiou, D., Muzkat, K.A., Fischer, E., (1968) J. Am. Chem. Soc., 90, p. 12
  • Sun, Y., Saltiel, J., (1989) J. Phys.Chem., 93, p. 8310
  • Bagchi, B., Oxtoby, D.W.J., (1983) Chem. Phys., 78, p. 2735
  • Levitus, M., Negri, R.M., Aramendía, P.F., (1995) J. Phys. Chem., 99, p. 14231

Citas:

---------- APA ----------
Rodríguez, J., Scherlis, D., Estrin, D., Aramendía, P.F. & Negri, R.M. (1997) . AM1 study of the ground and excited state potential energy surfaces of symmetric carbocyanines. Journal of Physical Chemistry A, 101(37), 6998-7006.
http://dx.doi.org/10.1021/jp9713569
---------- CHICAGO ----------
Rodríguez, J., Scherlis, D., Estrin, D., Aramendía, P.F., Negri, R.M. "AM1 study of the ground and excited state potential energy surfaces of symmetric carbocyanines" . Journal of Physical Chemistry A 101, no. 37 (1997) : 6998-7006.
http://dx.doi.org/10.1021/jp9713569
---------- MLA ----------
Rodríguez, J., Scherlis, D., Estrin, D., Aramendía, P.F., Negri, R.M. "AM1 study of the ground and excited state potential energy surfaces of symmetric carbocyanines" . Journal of Physical Chemistry A, vol. 101, no. 37, 1997, pp. 6998-7006.
http://dx.doi.org/10.1021/jp9713569
---------- VANCOUVER ----------
Rodríguez, J., Scherlis, D., Estrin, D., Aramendía, P.F., Negri, R.M. AM1 study of the ground and excited state potential energy surfaces of symmetric carbocyanines. J Phys Chem A. 1997;101(37):6998-7006.
http://dx.doi.org/10.1021/jp9713569