Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The observation that several cargoes move bidirectionally along microtubules in vivo raised the question regarding how molecular motors with opposed polarity coordinate during transport. In this work, we analyzed the switch of microtubule motors during the transport of melanosomes in Xenopus melanophores by registering trajectories of these organelles moving along microtubules using a fast and precise tracking method. We analyzed in detail the intervals of trajectories showing reversions in the original direction of transport and processive motion in the opposite direction for at least 250 nm. In most of the cases, the speed of the melanosome before the reversion slowly decreases with time approaching zero then, the organelle returns over the same path moving initially at a very high speed and slowing down with time. These results could be explained according to a model in which reversions are triggered by an elastic collision of the cargo with obstacles in the cytosol. This interaction generates a force opposed to the movement of the motor-driven organelle increasing the probability of detaching the active motors from the track. The model can explain reversions in melanosome trajectories as well as other characteristics of in vivo transport along microtubules observed by other authors. Our results suggest that the crowded cytoplasm plays a key role in regulating the coordination of microtubules-dependent motors. © 2008 Humana Press Inc.

Registro:

Documento: Artículo
Título:Exchange of microtubule molecular motors during melanosome transport in Xenopus laevis melanophores is triggered by collisions with intracellular obstacles
Autor:Bruno, L.; Echarte, M.M.; Levi, V.
Filiación:Departamento de Física, Facultad de Ciencias Exactas Y Naturales, Ciudad Universitaria, CP 1428, Ciudad de Buenos Aires, Argentina
Unidad Integrada INTA Balcarce, Facultad de Ciencias Agrarias, Ruta Nacional 226 km 73.5, CC 226, Balcarce 7620, Argentina
Departamento de Física Y Química Biológica, Facultad de Ciencias Exactas Y Naturales, Ciudad Universitaria, CP 1428, Ciudad de Buenos Aires, Argentina
Palabras clave:Coordination; Melanosome transport; Microtubule molecular motors; Xenopus melanophores; Xenopus laevis; algorithm; animal; article; cell culture; chemistry; melanophore; melanosome; metabolism; microtubule; physiology; statistical model; time; transport at the cellular level; Xenopus laevis; Algorithms; Animals; Biological Transport; Cells, Cultured; Melanophores; Melanosomes; Microtubules; Models, Statistical; Time Factors; Xenopus laevis
Año:2008
Volumen:52
Número:3
Página de inicio:191
Página de fin:201
DOI: http://dx.doi.org/10.1007/s12013-008-9034-3
Título revista:Cell Biochemistry and Biophysics
Título revista abreviado:Cell Biochem. Biophys.
ISSN:10859195
CODEN:CBBIF
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10859195_v52_n3_p191_Bruno

Referencias:

  • Gross, S.P., Hither and yon: A review of bi-directional microtubule-based transport (2004) Physical Biology, 1, pp. 1-R11
  • Suomalainen, M., Nakano, M.Y., Keller, S., Boucke, K., Stidwill, R.P., Greber, U.F., Microtubule-dependent plus- and minus end-directed motilities are competing processes for nuclear targeting of adenovirus (1999) Journal of Cell Biology, 144, pp. 657-672
  • Smith, G.A., Gross, S.P., Enquist, L.W., Herpesviruses use bidirectional fast-axonal transport to spread in sensory neurons (2001) Proceedings of the National Academy of Sciences of the United States of America, 98, pp. 3466-3470
  • Shah, J.V., Flanagan, L.A., Janmey, P.A., Leterrier, J.F., Bidirectional translocation of neurofilaments along microtubules mediated in part by dynein/dynactin (2000) Molecular Biology of the Cell, 11, pp. 3495-3508
  • Hollenbeck, P.J., The pattern and mechanism of mitochondrial transport in axons (1996) Frontiers in Bioscience, 1, pp. 91-d102
  • Hollenbeck, P.J., Products of endocytosis and autophagy are retrieved from axons by regulated retrograde organelle transport (1993) Journal of Cell Biology, 121, pp. 305-315
  • McDonald, D., Vodicka, M.A., Lucero, G., Svitkina, T.M., Borisy, G.G., Emerman, M., Hope, T.J., Visualization of the intracellular behavior of HIV in living cells (2002) Journal of Cell Biology, 159, pp. 441-452
  • Valetti, C., Wetzel, D.M., Schrader, M., Hasbani, M.J., Gill, S.R., Kreis, T.E., Schroer, T.A., Role of dynactin in endocytic traffic: Effects of dynamitin overexpression and colocalization with CLIP-170 (1999) Molecular Biology of the Cell, 10, pp. 4107-4120
  • Welte, M.A., Bidirectional transport along microtubules (2004) Current Biology, 14, pp. 525-R537
  • Gross, S.P., Welte, M.A., Block, S.M., Wieschaus, E.F., Coordination of opposite-polarity microtubule motors (2002) Journal of Cell Biology, 156, pp. 715-724
  • Gross, S.P., Tuma, M.C., Deacon, S.W., Serpinskaya, A.S., Reilein, A.R., Gelfand, V.I., Interactions and regulation of molecular motors in Xenopus melanophores (2002) Journal of Cell Biology, 156, pp. 855-865
  • Schroer, T.A., Dynactin (2004) Annual Review of Cell and Developmental Biology, 20, pp. 759-779
  • Gross, S.P., Dynactin: Coordinating motors with opposite inclinations (2003) Current Biology, 13, pp. 320-R322
  • Welte, M.A., Gross, S.P., Postner, M., Block, S.M., Wieschaus, E.F., Developmental regulation of vesicle transport in Drosophila embryos: Forces and kinetics (1998) Cell, 92, pp. 547-557
  • Deacon, S.W., Serpinskaya, A.S., Vaughan, P.S., Lopez Fanarraga, M., Vernos, I., Vaughan, K.T., Gelfand, V.I., Dynactin is required for bidirectional organelle transport (2003) Journal of Cell Biology, 160, pp. 297-301
  • Berezuk, M.A., Schroer, T.A., Dynactin enhances the processivity of kinesin-2 (2007) Traffic, 8, pp. 124-129
  • King, S.J., Schroer, T.A., Dynactin increases the processivity of the cytoplasmic dynein motor (2000) Nature Cell Biology, 2, pp. 20-24
  • Nascimento, A.A., Roland, J.T., Gelfand, V.I., Pigment cells: A model for the study of organelle transport (2003) Annual Review of Cell and Developmental Biology, 19, pp. 469-491
  • Rozdzial, M.M., Haimo, L.T., Bidirectional pigment granule movements of melanophores are regulated by protein phosphorylation and dephosphorylation (1986) Cell, 47, pp. 1061-1070
  • Sammak, P.J., Adams, S.R., Harootunian, A.T., Schliwa, M., Tsien, R.Y., Intracellular cyclic AMP not calcium, determines the direction of vesicle movement in melanophores: Direct measurement by fluorescence ratio imaging (1992) Journal of Cell Biology, 117, pp. 57-72
  • Tuma, M.C., Zill, A., Le Bot, N., Vernos, I., Gelfand, V., Heterotrimeric kinesin II is the microtubule motor protein responsible for pigment dispersion in Xenopus melanophores (1998) Journal of Cell Biology, 143, pp. 1547-1558
  • Nilsson, H., Wallin, M., Evidence for several roles of dynein in pigment transport in melanophores (1997) Cell Motility and the Cytoskeleton, 38, pp. 397-409
  • Rogers, S.L., Gelfand, V.I., Myosin cooperates with microtubule motors during organelle transport in melanophores (1998) Current Biology, 8, pp. 161-164
  • Rogers, S.L., Tint, I.S., Fanapour, P.C., Gelfand, V.I., Regulated bidirectional motility of melanophore pigment granules along microtubules in vitro (1997) Proceedings of the National Academy of Sciences of the United States of America, 94, pp. 3720-3725
  • Thompson, R.E., Larson, D.R., Webb, W.W., Precise nanometer localization analysis for individual fluorescent probes (2002) Biophysical Journal, 82, pp. 2775-2783
  • Levi, V., Serpinskaya, A.S., Gratton, E., Gelfand, V., Organelle transport along microtubules in Xenopus melanophores: Evidence for cooperation between multiple motors (2006) Biophysical Journal, 90, pp. 318-327
  • Gelles, J., Schnapp, B.J., Sheetz, M.P., Tracking kinesin-driven movements with nanometre-scale precision (1988) Nature, 331, pp. 450-453
  • Yildiz, A., Tomishige, M., Vale, R.D., Selvin, P.R., Kinesin walks hand-over-hand (2004) Science, 303, pp. 676-678
  • Levi, V., Gelfand, V.I., Serpinskaya, A.S., Gratton, E., Melanosomes transported by myosin-V in Xenopus melanophores perform slow 35 nm steps (2006) Biophysical Journal, 90, pp. 7-L9
  • Svoboda, K., Block, S.M., Force and velocity measured for single kinesin molecules (1994) Cell, 77, pp. 773-784
  • Carter, N.J., Cross, R.A., Mechanics of the kinesin step (2005) Nature, 435, pp. 308-312
  • Wang, H., Motor potential profile and a robust method for extracting it from time series of motor positions (2006) Journal of Theoretical Biology, 242, pp. 908-921
  • Lukić, B., Jeney, S., Sviben, Ž., Kulik, A.J., Florin, E., Forró, L., Motion of a colloidal particle in an optical trap (2007) Physical Review e, 76, p. 011112
  • Reichl, L.E., (1988) A Modern Course in Statistical Physics, , University of Texas press Austin, Texas
  • Lifshitz, E.M., Landau, L.D., (1987) Fluid Mechanics, , Butterworth-Heinemann Oxford
  • Howard, J., (2001) Mechanics of Motor Proteins and the Cytoskeleton, , Sinauer Associates Sunderland, MA
  • Gross, S.P., Welte, M.A., Block, S.M., Wieschaus, E.F., Dynein-mediated cargo transport in vivo. a switch controls travel distance (2000) Journal of Cell Biology, 148, pp. 945-956
  • Sharma, S., Wagh, S., Govindarajan, R., Melanosomal proteins-role in melanin polymerization (2002) Pigment Cell Research, 15, pp. 127-133
  • Yamada, S., Wirtz, D., Kuo, S.C., Mechanics of living cells measured by laser tracking microrheology (2000) Biophysical Journal, 78, pp. 1736-1747
  • Leduc, C., Ruhnow, F., Howard, J., Diez, S., Detection of fractional steps in cargo movement by the collective operation of kinesin-1 motors (2007) Proceedings of the National Academy of Sciences of the United States of America, 104, pp. 10847-10852
  • Coppin, C.M., Pierce, D.W., Hsu, L., Vale, R.D., The load dependence of kinesin's mechanical cycle (1997) Proceedings of the National Academy of Sciences of the United States of America, 94, pp. 8539-8544
  • Klumpp, S., Lipowsky, R., Cooperative cargo transport by several molecular motors (2005) Proceedings of the National Academy of Sciences of the United States of America, 102, pp. 17284-17289
  • Conover, W.J., (1999) Practical Nonparametric Statistics, , Wiley New York
  • Gardel, M.L., Shin, J.H., MacKintosh, F.C., Mahadevan, L., Matsudaira, P., Weitz, D.A., Elastic behavior of cross-linked and bundled actin networks (2004) Science, 304, pp. 1301-1305
  • Kawaguchi, K., Uemura, S., Ishiwata, S., Equilibrium and transition between single- and double-headed binding of kinesin as revealed by single-molecule mechanics (2003) Biophysical Journal, 84, pp. 1103-1113
  • Jeney, S., Stelzer, E.H., Grubmuller, H., Florin, E.L., Mechanical properties of single motor molecules studied by three-dimensional thermal force probing in optical tweezers (2004) Chemphyschem, 5, pp. 1150-1158
  • Mason, T.G., Ganesan, K., Van Zanten, J.H., Wirtz, D., Kuo, S.C., Particle tracking microrheology of complex fluids (1997) Physical Review Letters, 79, pp. 3282-3285
  • Tseng, Y., Kole, T.P., Wirtz, D., Micromechanical mapping of live cells by multiple-particle-tracking microrheology (2002) Biophysical Journal, 83, pp. 3162-3176
  • Ali, M.Y., Krementsova, E.B., Kennedy, G.G., Mahaffy, R., Pollard, T.D., Trybus, K.M., Warshaw, D.M., Myosin Va maneuvers through actin intersections and diffuses along microtubules (2007) Proceedings of the National Academy of Sciences of the United States of America, 104, pp. 4332-4336
  • Guo, S., Hong, L., Akhremitchev, B.B., Simon, J.D., Surface elastic properties of human retinal pigment epithelium melanosomes (2008) Photochemistry and Photobiology, 84, pp. 671-678
  • Goldstein, L.S., Kinesin molecular motors: Transport pathways, receptors, and human disease (2001) Proceedings of the National Academy of Sciences of the United States of America, 98, pp. 6999-7003
  • Hurd, D.D., Saxton, W.M., Kinesin mutations cause motor neuron disease phenotypes by disrupting fast axonal transport in Drosophila (1996) Genetics, 144, pp. 1075-1085
  • Scott, D.W., On optimal and data-based histograms (1979) Biometrika, 3, pp. 605-610

Citas:

---------- APA ----------
Bruno, L., Echarte, M.M. & Levi, V. (2008) . Exchange of microtubule molecular motors during melanosome transport in Xenopus laevis melanophores is triggered by collisions with intracellular obstacles. Cell Biochemistry and Biophysics, 52(3), 191-201.
http://dx.doi.org/10.1007/s12013-008-9034-3
---------- CHICAGO ----------
Bruno, L., Echarte, M.M., Levi, V. "Exchange of microtubule molecular motors during melanosome transport in Xenopus laevis melanophores is triggered by collisions with intracellular obstacles" . Cell Biochemistry and Biophysics 52, no. 3 (2008) : 191-201.
http://dx.doi.org/10.1007/s12013-008-9034-3
---------- MLA ----------
Bruno, L., Echarte, M.M., Levi, V. "Exchange of microtubule molecular motors during melanosome transport in Xenopus laevis melanophores is triggered by collisions with intracellular obstacles" . Cell Biochemistry and Biophysics, vol. 52, no. 3, 2008, pp. 191-201.
http://dx.doi.org/10.1007/s12013-008-9034-3
---------- VANCOUVER ----------
Bruno, L., Echarte, M.M., Levi, V. Exchange of microtubule molecular motors during melanosome transport in Xenopus laevis melanophores is triggered by collisions with intracellular obstacles. Cell Biochem. Biophys. 2008;52(3):191-201.
http://dx.doi.org/10.1007/s12013-008-9034-3