Artículo

Artículo de Acceso Abierto. Puede ser descargado en su versión final
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Using variational arguments, we prove some nonexistence and multiplicity results for positive solutions of a system of p-Laplace equations of gradient form. Then we study a p-Laplace-type problem with nonlinear boundary conditions. Copyright © 2004 Hindawi Publishing Corporation.

Registro:

Documento: Artículo
Título:Multiple positive solutions for quasilinear elliptic problems with sign-changing nonlinearities
Autor:Bonder, J.F.
Filiación:Departamento de Matemática, Fac. de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
Año:2004
Volumen:2004
Número:12
Página de inicio:1047
Página de fin:1055
DOI: http://dx.doi.org/10.1155/S1085337504403078
Handle:http://hdl.handle.net/20.500.12110/paper_10853375_v2004_n12_p1047_Bonder
Título revista:Abstract and Applied Analysis
Título revista abreviado:Abstr. Appl. Anal.
ISSN:10853375
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_10853375_v2004_n12_p1047_Bonder.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10853375_v2004_n12_p1047_Bonder

Referencias:

  • Babuška, I., Osborn, J., Eigenvalue problems (1991) Handbook of Numerical Analysis, 2, pp. 641-787. , North-Holland, Amsterdam
  • Boccardo, L., De Figueiredo, D.G., Some remarks on a system of quasilinear elliptic equations (2002) NoDEA Nonlinear Differential Equations Appl., 9 (3), pp. 309-323
  • De Figueiredo, D.G., Felmer, P.L., On superquadratic elliptic systems (1994) Trans. Amer. Math. Soc., 343 (1), pp. 99-116
  • Bonder, J.F., Rossi, J.D., Existence results for the p-Laplacian with nonlinear boundary conditions (2001) J. Math. Anal. Appl., 263 (1), pp. 195-223
  • A nonlinear eigenvalue problem with indefinite weights related to the Sobolev trace embedding (2002) Publ. Mat., 46 (1), pp. 221-235
  • Martinez, S., Rossi, J.D., Isolation and simplicity for the first eigenvalue of the p-Laplacian with a nonlinear boundary condition (2002) Abstr. Appl. Anal., 7 (5), pp. 287-293
  • Maya, C., Shivaji, R., Multiple positive solutions for a class of semilinear elliptic boundary value problems (1999) Nonlinear Anal. Ser. A: Theory Methods, 38 (4), pp. 497-504
  • Perera, K., Multiple positive solutions for a class of quasilinear elliptic boundary-value problems (2003) Electron. J. Differential Equations, 2003 (7), pp. 1-5
  • Rabinowitz, P.H., Minimax methods in critical point theory with applications to differential equations (1986) CBMS Regional Conference Series in Mathematics, 65. , American Mathematical Society, Rhode Island
  • Tolksdorf, P., On the Dirichlet problem for quasilinear equations in domains with conical boundary points (1983) Comm. Partial Differential Equations, 8 (7), pp. 773-817
  • Trudinger, N.S., On Harnack type inequalities and their application to quasilinear elliptic equations (1967) Comm. Pure Appl. Math., 20, pp. 721-747
  • Vázquez, J.L., A strong maximum principle for some quasilinear elliptic equations (1984) Appl. Math. Optim., 12 (3), pp. 191-202

Citas:

---------- APA ----------
(2004) . Multiple positive solutions for quasilinear elliptic problems with sign-changing nonlinearities. Abstract and Applied Analysis, 2004(12), 1047-1055.
http://dx.doi.org/10.1155/S1085337504403078
---------- CHICAGO ----------
Bonder, J.F. "Multiple positive solutions for quasilinear elliptic problems with sign-changing nonlinearities" . Abstract and Applied Analysis 2004, no. 12 (2004) : 1047-1055.
http://dx.doi.org/10.1155/S1085337504403078
---------- MLA ----------
Bonder, J.F. "Multiple positive solutions for quasilinear elliptic problems with sign-changing nonlinearities" . Abstract and Applied Analysis, vol. 2004, no. 12, 2004, pp. 1047-1055.
http://dx.doi.org/10.1155/S1085337504403078
---------- VANCOUVER ----------
Bonder, J.F. Multiple positive solutions for quasilinear elliptic problems with sign-changing nonlinearities. Abstr. Appl. Anal. 2004;2004(12):1047-1055.
http://dx.doi.org/10.1155/S1085337504403078