Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Cell movement and local intercellular signaling are crucial components of morphogenesis during animal development. Intercellular signaling regulates the collective movement of a cell population via direct cell-cell contact. Cell movement, conversely, can influence local intercellular signaling by rearranging neighboring cells. Here, we first discuss theoretical models that address how intercellular signaling regulates collective cell movement during development. Examples include neural crest cell migration, convergent extension, and cell movement during vertebrate axis elongation. Second, we review theoretical studies on how cell movement may affect intercellular signaling, using the segmentation clock in zebrafish as an example. We propose that interplay between cell movement and intercellular signaling must be considered when studying morphogenesis in embryonic development. © 2014 Elsevier Ltd.

Registro:

Documento: Artículo
Título:Interplay between intercellular signaling and cell movement in development
Autor:Uriu, K.; Morelli, L.G.; Oates, A.C.
Filiación:Theoretical Biology Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
Departamento de Física, FCEyN Universidad de Buenos Aires, Argentina
IFIBA, CONICET, Ciudad Universitaria, Pabellón 1, Buenos Aires, 1428, Argentina
MRC-National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, United Kingdom
University College London, Gower Street, London, WC1E 6BT, United Kingdom
Palabras clave:Cell movement; Convergent extension; Intercellular signaling; Neural crest migration; Segmentation clock; Vertebrate axis elongation; cell migration; cell motion; cell surface; cell synchronization; embryo development; intracellular signaling; molecular clock; morphogenesis; neural crest; neural crest cell; nonhuman; Review; theoretical study; zebra fish; animal; biological model; cell differentiation; cell motion; cytology; embryo development; embryology; extracellular space; morphogenesis; physiology; signal transduction; Animals; Body Patterning; Cell Differentiation; Cell Movement; Embryonic Development; Extracellular Space; Models, Biological; Neural Crest; Signal Transduction
Año:2014
Volumen:35
Página de inicio:66
Página de fin:72
DOI: http://dx.doi.org/10.1016/j.semcdb.2014.05.011
Título revista:Seminars in Cell and Developmental Biology
ISSN:10849521
CODEN:SCDBF
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10849521_v35_n_p66_Uriu

Referencias:

  • Friedl, P., Gilmour, D., Collective cell migration in morphogenesis, regeneration and cancer (2009) Nat Rev Mol Cell Biol, 10, pp. 445-457
  • Rorth, P., Fellow travellers: emergent properties of collective cell migration (2012) EMBO Rep, 13, pp. 984-991
  • Morelli, L.G., Uriu, K., Ares, S., Oates, A.C., Computational approaches to developmental patterning (2012) Science, 336, pp. 187-191
  • Mayor, R., Theveneau, E., The neural crest (2013) Development, 140, pp. 2247-2251
  • Le Douarin, N.M., Creuzet, S., Couly, G., Dupin, E., Neural crest cell plasticity and its limits (2004) Development, 131, pp. 4637-4650
  • Sauka-Spengler, T., Bronner-Fraser, M., A gene regulatory network orchestrates neural crest formation (2008) Nat Rev Mol Cell Biol, 9, pp. 557-568
  • Knecht, A.K., Bronner-Fraser, M., Induction of the neural crest: a multigene process (2002) Nat Rev Genet, 3, pp. 453-461
  • Theveneau, E., Mayor, R., Collective cell migration of the cephalic neural crest: the art of integrating information (2011) Genesis, 49, pp. 164-176
  • Kulesa, P.M., Bailey, C.M., Kasemeier-Kulesa, J.C., McLennan, R., Cranial neural crest migration: new rules for an old road (2010) Dev Biol, 344, pp. 543-554
  • McLennan, R., Dyson, L., Prather, K.W., Morrison, J.A., Baker, R.E., Maini, P.K., Multiscale mechanisms of cell migration during development: theory and experiment (2012) Development, 139, pp. 2935-2944
  • Wynn, M.L., Kulesa, P.M., Schnell, S., Computational modelling of cell chain migration reveals mechanisms that sustain follow-the-leader behaviour (2012) J R Soc Interface, 9, pp. 1576-1588
  • Abercrombie, M., Heaysman, J.E., Observations on the social behaviour of cells in tissue culture. I. Speed of movement of chick heart fibroblasts in relation to their mutual contacts (1953) Exp Cell Res, 5, pp. 111-131
  • Carmona-Fontaine, C., Matthews, H.K., Kuriyama, S., Moreno, M., Dunn, G.A., Parsons, M., Contact inhibition of locomotion in vivo controls neural crest directional migration (2008) Nature, 456, pp. 957-961
  • Davis, J.R., Huang, C.Y., Zanet, J., Harrison, S., Rosten, E., Cox, S., Emergence of embryonic pattern through contact inhibition of locomotion (2012) Development, 139, pp. 4555-4560
  • Carmona-Fontaine, C., Theveneau, E., Tzekou, A., Tada, M., Woods, M., Page, K.M., Complement fragment C3a controls mutual cell attraction during collective cell migration (2011) Dev Cell, 21, pp. 1026-1037
  • Romanczuk, P., Couzin, I.D., Schimansky-Geier, L., Collective motion due to individual escape and pursuit response (2009) Phys Rev Lett, 102, p. 010602
  • Gong, Y., Mo, C., Fraser, S.E., Planar cell polarity signalling controls cell division orientation during zebrafish gastrulation (2004) Nature, 430, pp. 689-693
  • Lecuit, T., Le Goff, L., Orchestrating size and shape during morphogenesis (2007) Nature, 450, pp. 189-192
  • Zallen, J.A., Blankenship, J.T., Multicellular dynamics during epithelial elongation (2008) Semin Cell Dev Biol, 19, pp. 263-270
  • Rauzi, M., Verant, P., Lecuit, T., Lenne, P.F., Nature and anisotropy of cortical forces orienting Drosophila tissue morphogenesis (2008) Nat Cell Biol, 10, pp. 1401-1410
  • Tada, M., Heisenberg, C.P., Convergent extension: using collective cell migration and cell intercalation to shape embryos (2012) Development, 139, pp. 3897-3904
  • Keller, R., Shook, D., Skoglund, P., The forces that shape embryos: physical aspects of convergent extension by cell intercalation (2008) Phys Biol, 5, p. 015007
  • Gray, R.S., Roszko, I., Solnica-Krezel, L., Planar cell polarity: coordinating morphogenetic cell behaviors with embryonic polarity (2011) Dev Cell, 21, pp. 120-133
  • Munro, E.M., Odell, G.M., Polarized basolateral cell motility underlies invagination and convergent extension of the ascidian notochord (2002) Development, 129, pp. 13-24
  • Varner, V.D., Voronov, D.A., Taber, L.A., Mechanics of head fold formation: investigating tissue-level forces during early development (2010) Development, 137, pp. 3801-3811
  • Skoglund, P., Keller, R., Integration of planar cell polarity and ECM signaling in elongation of the vertebrate body plan (2010) Curr Opin Cell Biol, 22, pp. 589-596
  • Myers, D.C., Sepich, D.S., Solnica-Krezel, L., Bmp activity gradient regulates convergent extension during zebrafish gastrulation (2002) Dev Biol, 243, pp. 81-98
  • von der Hardt, S., Bakkers, J., Inbal, A., Carvalho, L., Solnica-Krezel, L., Heisenberg, C.P., The Bmp gradient of the zebrafish gastrula guides migrating lateral cells by regulating cell-cell adhesion (2007) Curr Biol, 17, pp. 475-487
  • Keller, R., Danilchik, M., Regional expression, pattern and timing of convergence and extension during gastrulation of Xenopus laevis (1988) Development, 103, pp. 193-209
  • Zajac, M., Jones, G.L., Glazier, J.A., Model of convergent extension in animal morphogenesis (2000) Phys Rev Lett, 85, pp. 2022-2025
  • Zajac, M., Jones, G.L., Glazier, J.A., Simulating convergent extension by way of anisotropic differential adhesion (2003) J Theor Biol, 222, pp. 247-259
  • Honda, H., Nagai, T., Tanemura, M., Two different mechanisms of planar cell intercalation leading to tissue elongation (2008) Dev Dyn, 237, pp. 1826-1836
  • Brodland, G.W., Do lamellipodia have the mechanical capacity to drive convergent extension? (2006) Int J Dev Biol, 50, pp. 151-155
  • Yin, C., Kiskowski, M., Pouille, P.A., Farge, E., Solnica-Krezel, L., Cooperation of polarized cell intercalations drives convergence and extension of presomitic mesoderm during zebrafish gastrulation (2008) J Cell Biol, 180, pp. 221-232
  • Bénazéraf, B., Francois, P., Baker, R.E., Denans, N., Little, C.D., Pourquié, O., A random cell motility gradient downstream of FGF controls elongation of an amniote embryo (2010) Nature, 466, pp. 248-252
  • Lawton, A.K., Nandi, A., Stulberg, M.J., Dray, N., Sneddon, M.W., Pontius, W., Regulated tissue fluidity steers zebrafish body elongation (2013) Development, 140, pp. 573-582
  • Delfini, M.C., Dubrulle, J., Malapert, P., Chal, J., Pourquié, O., Control of the segmentation process by graded MAPK/ERK activation in the chick embryo (2005) Proc Natl Acad Sci U S A, 102, pp. 11343-11348
  • Mara, A., Schroeder, J., Chalouni, C., Holley, S.A., Priming, initiation and synchronization of the segmentation clock by deltaD and deltaC (2007) Nat Cell Biol, 9, pp. 523-530
  • Szabó, B., Szöllösi, G., Gönci, B., Jurányi, Z., Selmeczi, D., Vicsek, T., Phase transition in the collective migration of tissue cells: experiment and model (2006) Phys Rev E, p. 74
  • Oates, A.C., Morelli, L.G., Ares, S., Patterning embryos with oscillations: structure, function and dynamics of the vertebrate segmentation clock (2012) Development, 139, pp. 625-639
  • Pourquié, O., Vertebrate segmentation: from cyclic gene networks to scoliosis (2011) Cell, 145, pp. 650-663
  • Harima, Y., Takashima, Y., Ueda, Y., Ohtsuka, T., Kageyama, R., Accelerating the tempo of the segmentation clock by reducing the number of introns in the Hes7 gene (2013) Cell Rep, 3, pp. 1-7
  • Uriu, K., Ares, S., Oates, A.C., Morelli, L.G., Optimal cellular mobility for synchronization arising from the gradual recovery of intercellular interactions (2012) Phys Biol, 9, p. 036006
  • Uriu, K., Morishita, Y., Iwasa, Y., Random cell movement promotes synchronization of the segmentation clock (2010) Proc Natl Acad Sci U S A, 107, pp. 4979-4984
  • Fujiwara, N., Kurths, J., Díaz-Guilera, A., Synchronization in networks of mobile oscillators (2011) Phys Rev E, p. 83
  • Peruani, F., Nicola, E.M., Morelli, L.G., Mobility induces global synchronization of oscillators in periodic extended systems (2010) New J Phys, 12, p. 093029
  • Skufca, J.D., Bollt, E.M., Communication and synchronization in disconnected networks with dynamic topology: moving neighborhood networks (2004) Math Biol Eng, 1, pp. 1-13
  • Uriu, K., Ares, S., Oates, A.C., Morelli, L.G., Dynamics of mobile coupled phase oscillators (2013) Phys Rev E, p. 87
  • Delaune, E.A., Francois, P., Shih, N.P., Amacher, S.L., Single-cell-resolution imaging of the impact of notch signaling and mitosis on segmentation clock dynamics (2012) Dev Cell, 23, pp. 995-1005
  • Soroldoni, D., Oates, A.C., Live transgenic reporters of the vertebrate embryo's segmentation clock (2011) Curr Opin Genet Dev, 21, pp. 600-605
  • Turing, A.M., The chemical basis of morphogenesis (1990) Bull Math Biol, 52, pp. 153-197. , [discussion 19-52]
  • Howard, J., Grill, S.W., Bois, J.S., Turing's next steps: the mechanochemical basis of morphogenesis (2011) Nat Rev Mol Cell Biol, 12, pp. 392-398

Citas:

---------- APA ----------
Uriu, K., Morelli, L.G. & Oates, A.C. (2014) . Interplay between intercellular signaling and cell movement in development. Seminars in Cell and Developmental Biology, 35, 66-72.
http://dx.doi.org/10.1016/j.semcdb.2014.05.011
---------- CHICAGO ----------
Uriu, K., Morelli, L.G., Oates, A.C. "Interplay between intercellular signaling and cell movement in development" . Seminars in Cell and Developmental Biology 35 (2014) : 66-72.
http://dx.doi.org/10.1016/j.semcdb.2014.05.011
---------- MLA ----------
Uriu, K., Morelli, L.G., Oates, A.C. "Interplay between intercellular signaling and cell movement in development" . Seminars in Cell and Developmental Biology, vol. 35, 2014, pp. 66-72.
http://dx.doi.org/10.1016/j.semcdb.2014.05.011
---------- VANCOUVER ----------
Uriu, K., Morelli, L.G., Oates, A.C. Interplay between intercellular signaling and cell movement in development. 2014;35:66-72.
http://dx.doi.org/10.1016/j.semcdb.2014.05.011