Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We present a set of techniques that enhances a previously developed time domain simulation of wave propagation and allows the study of the optical response of a broad range of dielectric photonic structures. This method is particularly suitable for dealing with complex biological structures, especially due to the simple and intuitive way of defining the setup and the photonic structure to be simulated, which can be done via a digital image of the structure. The presented techniques include a direction filter that permits the decoupling of waves traveling simultaneously in different directions, a dynamic differential absorber to cancel the waves reflected at the edges of the simulation space, and a multifrequency excitation scheme. We also show how the simulation can be adapted to apply a near to far field method in order to evaluate the resulting wavefield outside the simulation domain. We validate these techniques, and, as an example, we apply the method to the complex structure of a microorganism called Diachea leucopoda, which exhibits a multicolor iridescent appearance. © 2013 Optical Society of America.

Registro:

Documento: Artículo
Título:Enhanced method for determining the optical response of highly complex biological photonic structures
Autor:Dolinko, A.E.; Skigin, D.C.
Filiación:Departamento de Biodiversidad y Biología Experimental, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, C1428EHA Buenos Aires, Argentina
Grupo de Electromagnetismo Aplicado, Departamento de Física, Universidad de Buenos Aires, and IFIBA-CONICET, Pabellón I, C1428EHABuenos Aires, Argentina
Palabras clave:Wave propagation; Biological structures; Complex structure; Direction filter; Far-field methods; Multi-frequency excitation; Photonic structure; Simulation domain; Time-domain simulations; Time domain analysis; algorithm; article; computer simulation; Dictyosteliida; electromagnetic radiation; image processing; methodology; optics; photon; physiology; reproducibility; transmission electron microscopy; Algorithms; Computer Simulation; Dictyosteliida; Electromagnetic Radiation; Image Processing, Computer-Assisted; Microscopy, Electron, Transmission; Optics and Photonics; Photons; Reproducibility of Results
Año:2013
Volumen:30
Número:9
Página de inicio:1746
Página de fin:1759
DOI: http://dx.doi.org/10.1364/JOSAA.30.001746
Título revista:Journal of the Optical Society of America A: Optics and Image Science, and Vision
Título revista abreviado:J Opt Soc Am A
ISSN:10847529
CODEN:JOAOD
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10847529_v30_n9_p1746_Dolinko

Referencias:

  • Veselago, V.G., The electrodynamics of substances with simultaneously negative values of e and μ (1968) Sov. Phys. Usp, 10, pp. 509-514
  • Pendry, J.B., Negative refraction makes a perfect lens (2000) Phys. Rev. Lett, 85, pp. 3966-3969
  • Tsukerman, I., Negative refraction and the minimum lattice cell size (2008) J. Opt. Soc. Am. B, 25, pp. 927-936
  • Jensen, L., Lei, Z., Chan, C.T., Sheng, P., Photonic band gap from a stack of positive and negative index materials (2003) Phys. Rev. Lett, 90, p. 083901
  • Grbic, A., Eleftheriades, G.V., Overcoming the diffraction limit with a planar left-handed transmission-line lens (2004) Phys. Rev. Lett, 92, p. 117403
  • Ergin, T., Stenger, N., Brenner, P., Pendry, J.B., Wegener, M., Three-dimensional invisibility cloak at optical wavelengths (2010) Science, 328, pp. 337-339
  • Settle, M., Engelen, R., Salib, M., Michaeli, A., Kuipers, L., Krauss, T.F., Flatband slow light in photonic crystals featuring spatial pulse compression and terahertz bandwidth (2007) Opt. Express, 15, pp. 219-226
  • O'brien, D., Gomez-Iglesias, A., Settle, M.D., Michaeli, A., Salib, M., Krauss, T.F., Tunable optical delay using photonic crystal heterostructure nanocavities (2007) Phys. Rev. B, 76, p. 115110
  • Valentine, J., Li, J., Zentgraf, T., Bartal, G., Zhang, X., An optical cloak made of dielectrics (2009) Nat. Mater, 8, pp. 568-571
  • Joannopoulos, J., Meade, R., Winn, J., (1995) Photonic Crystals, , Princeton University
  • Russell, P., Photonic crystal fibers (2003) Science, 299, pp. 358-362
  • Huntington, S., Katsifolis, J., Gibson, B., Canning, J., Lyytikainen, K., Zagari, J., Cahill, L., Love, J., Retaining and characterising nano-structure within tapered air-silica structured optical fibers (2003) Opt. Express, 11, pp. 98-104
  • Martelli, C., Canning, J., Gibson, B., Huntington, S., Bend loss in structured optical fibres (2007) Opt. Express, 15, pp. 17639-17644
  • Vukusic, P., Sambles, J.R., Photonic structures in biology (2003) Nature, 424, pp. 852-855
  • Kinoshita, S., (2008) Structural Colors in the Realm of Nature, , World Scientific
  • Berthier, S., (2007) Iridescences, the Physical Colours of Insects, , Springer
  • Inchaussandague, M., Skigin, D., Carmaran, C., Rosenfeldt, S., Structural color in myxomycetes (2010) Opt. Express, 18, pp. 16055-16063
  • Luna, A.E., Skigin, D.C., Inchaussandague, M., Alsina, A.R., Structural color in beetles of South America (2010) Proc. SPIE, 7782, p. 778205
  • Andrewartha, J.R., Fox, J.R., Wilson, I.J., Resonance anomalies in the lamellar grating (1979) Opt. Acta, 26, pp. 69-89
  • Skigin, D.C., Depine, R.A., The multilayer modal method for electromagnetic scattering from surfaces with several arbitrarily shaped grooves (1997) J. Mod. Opt, 44, pp. 1023-1036
  • Depine, R.A., Skigin, D.C., Multilayer modal method for diffraction from dielectric inhomogeneous apertures (1998) J. Opt. Soc. Am. A, 15, pp. 675-683
  • Moharam, M.G., Gaylord, T.K., Rigorous coupled-wave analysis of planar-grating diffraction (1981) J. Opt. Soc. Am. A, 71, pp. 811-818
  • Chandezon, J., Dupuis, M., Cornet, G., Maystre, D., Multicoated gratings: A differential formalism applicable in the entire optical region (1982) J. Opt. Soc. Am, 72, pp. 839-846
  • Depine, R.A., Inchaussandague, M.E., Corrugated diffraction gratings in uniaxial crystals (1994) J. Opt. Soc. Am. A, 11, pp. 173-180
  • Maradudin, A.A., Michel, T.R., McGurn, A.R., Méndez, E.R., Enhanced backscattering of light from a random grating (1990) Ann. Phys, 203, pp. 255-307
  • Lester, M., Skigin, D.C., Depine, R.A., Blaze produced by a dual-period array of subwavelength cylinders (2009) J. Opt. A, 11, p. 045705
  • Schmidt, G., Kleemann, B.H., Integral equation methods from grating theory to photonics: An overview and new approaches for conical diffraction (2011) J. Mod. Opt, 58, pp. 407-423
  • Taflove, A., Hagness, S.C., (2005) Computational Electrodynamics: The Finite-Difference Time-Domain Method, , , 3rd ed. Artech
  • Yee, K., Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media (1966) IEEE Trans. Antennas Propag, 14, pp. 302-307
  • Oskooi, A.F., Roundy, D., Ibanescu, M., Bermel, P., Joannopoulos, J.D., Johnson, S.G., MEEP: A flexible freesoftware package for electromagnetic simulations by the FDTD method (2010) Comput. Phys. Commun, 181, pp. 687-702
  • Kolle, M., (2011) Photonic Structures Inspired by Nature, , Springer- Verlag
  • Su, M.F., El-Kady, I., Bader, D.A., Lin, S., A novel FDTD application featuring OpenMP-MPI hybrid parallelization (2004) Proceedings of the 33rd International Conference on Parallel Processing (ICPP), Montreal, pp. 373-379
  • Dolinko, A.E., From Newton's second law to Huygens's principle: Visualizing waves in a large array of masses joined by springs (2009) Eur. J. Phys, 30, pp. 1217-1228
  • Pei, T.-H., Huang, Y.-T., Effective refractive index of the photonic crystal deduced from the oscillation model of the membrane (2012) J. Opt. Soc. Am. B, 29, pp. 2334-2338
  • Shannon, C.E., Communication in the presence of noise (1949) Proc. Inst. Radio Eng, 37, pp. 10-21
  • Courant, R., Friedrichs, K., Lewy, H., Über die partiellen Differenzengleichungen der mathematischen Physik (1928) Math. Ann, 100, pp. 32-74
  • Cobelli, P.J., Maurel, A., Pagneux, V., Petitjeans, P., Global measurement of water waves by Fourier transform profilometry (2009) Exp. Fluids, 46, pp. 1037-1047
  • Berenger, J., A perfectly matched layer for the absorption of electromagnetic waves (1994) J. Comp. Physiol, 114, pp. 185-200
  • Engquist, B., Majda, A., Numerical absorbing boundary conditions for the wave equation (1979) Commun. Pure Appl. Math, 32, pp. 313-357
  • Higdon, R.L., Absorbing boundary conditions for difference approximations to the multi-dimensional wave equation (1986) Math. Comp, 47, pp. 437-459
  • Higdon, R.L., Numerical absorbing boundary conditions for the wave equation (1987) Math. Comp, 49, pp. 65-90
  • Hennelly, B., Sheridan, J.T., Generalizing, optimizing, and inventing numerical algorithms for the fractional Fourier, Fresnel, and linear canonical transforms (2005) J. Opt. Soc. Am. A, 22, pp. 917-927
  • Jackson, J.D., (1998) Classical Electrodynamics, , 3rd ed.Wiley
  • Dolinko, A., Skigin, D., Inchaussandague, M., Carmaran, C., Photonic simulation method applied to the study of structural color in myxomycetes (2012) Opt. Express, 20, pp. 15139-15148

Citas:

---------- APA ----------
Dolinko, A.E. & Skigin, D.C. (2013) . Enhanced method for determining the optical response of highly complex biological photonic structures. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 30(9), 1746-1759.
http://dx.doi.org/10.1364/JOSAA.30.001746
---------- CHICAGO ----------
Dolinko, A.E., Skigin, D.C. "Enhanced method for determining the optical response of highly complex biological photonic structures" . Journal of the Optical Society of America A: Optics and Image Science, and Vision 30, no. 9 (2013) : 1746-1759.
http://dx.doi.org/10.1364/JOSAA.30.001746
---------- MLA ----------
Dolinko, A.E., Skigin, D.C. "Enhanced method for determining the optical response of highly complex biological photonic structures" . Journal of the Optical Society of America A: Optics and Image Science, and Vision, vol. 30, no. 9, 2013, pp. 1746-1759.
http://dx.doi.org/10.1364/JOSAA.30.001746
---------- VANCOUVER ----------
Dolinko, A.E., Skigin, D.C. Enhanced method for determining the optical response of highly complex biological photonic structures. J Opt Soc Am A. 2013;30(9):1746-1759.
http://dx.doi.org/10.1364/JOSAA.30.001746