Artículo

Depine, R.A.; Inchaussandague, M.E.; Lakhtakia, A. "Classification of dispersion equations for homogeneous, dielectric-magnetic, uniaxial materials" (2006) Journal of the Optical Society of America A: Optics and Image Science, and Vision. 23(4):949-955
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The geometric representation at a fixed frequency of the wave vector (or dispersion) surface ω(k) for lossless, homogeneous, dielectric-magnetic uniaxial materials is explored for the case when the elements of the relative permittivity and permeability tensors of the material can have any sign. Electromagnetic plane waves propagating inside the material can exhibit dispersion surfaces in the form of ellipsoids of revolution, hyperboloids of one sheet, or hyperboloids of two sheets. Furthermore, depending on the relative orientation of the optic axis, the intersections of these surfaces with fixed planes of propagation can be circles, ellipses, hyperbolas, or straight lines. The understanding obtained is used to study the reflection and refraction of electromagnetic plane waves due to a planar interface with an isotropic medium. © 2006 Optical Society of America.

Registro:

Documento: Artículo
Título:Classification of dispersion equations for homogeneous, dielectric-magnetic, uniaxial materials
Autor:Depine, R.A.; Inchaussandague, M.E.; Lakhtakia, A.
Filiación:Grupo de Electromagnetismo Aplicado (GEA), Departamento de Física, Universidad de Buenos Aires, Pabellón I, 1428 Buenos Aires, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rivadavia 1917 Buenos Aires, Argentina
Computational and Theoretical Materials Sciences Group, Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802-6812, United States
Palabras clave:Dielectric materials; Magnetic materials; Mechanical permeability; Natural frequencies; Permittivity; Electromagnetic plane wave; Uniaxial material; Light propagation
Año:2006
Volumen:23
Número:4
Página de inicio:949
Página de fin:955
DOI: http://dx.doi.org/10.1364/JOSAA.23.000949
Título revista:Journal of the Optical Society of America A: Optics and Image Science, and Vision
Título revista abreviado:J Opt Soc Am A
ISSN:10847529
CODEN:JOAOD
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10847529_v23_n4_p949_Depine

Referencias:

  • Shelby, R.A., Smith, D.R., Schultz, S., "Experimental verification of negative index of refraction" (2001) Science, 292, pp. 77-79
  • Parazzoli, C.G., Greegor, R.B., Li, K., Koltenbah, B.E.C., Tanielian, M., "Experimental verification and simulation of negative index of refraction using Snell's law" (2003) Phys. Rev. Lett., 90, pp. 1074011-1074014
  • Houck, A.A., Brock, J.B., Chuang, I.L., "Experimental observations of a left-handed material that obeys Snell's law" (2003) Phys. Rev. Lett., 90, pp. 1374011-1374014
  • Pendry, J.B., Holden, A.J., Stewart, W.J., Youngs, I., "Extremely low frequency plasmons in metallic mesostructures" (1996) Phys. Rev. Lett., 76, pp. 4773-4776
  • Pendry, J.B., Holden, A.J., Stewart, W.J., "Magnetism from conductors and enhanced nonlinear phenomena" (1999) IEEE Trans. Microwave Theory Tech., 47, pp. 2075-2084
  • Lakhtakia, A., McCall, M.W., Weiglhofer, W.S., "Brief overview of recent developments on negative phase-velocity medium (alias left-handed materials)" (2002) AEÜ, Int. J. Electron. Commun., 56, pp. 407-410
  • Lakhtakia, A., McCall, M.W., Weiglhofer, W.S., "Negative phase-velocity mediums" (2003) Introduction to Complex Mediums for Optics and Electromagnetics, , W. S. Weiglhofer and A. Lakhtakia, eds., (SPIE)
  • Boardman, A.D., King, N., Velasco, L., "Negative refraction in perspective" (2005) Electromagnetics, 25, pp. 365-389
  • Mackay, T.G., Lakhtakia, A., "Plane waves with negative phase velocity in Faraday chiral mediums" (2004) Phys. Rev. E, 69, p. 0266021
  • Hu, L.B., Chui, S.T., "Characteristics of electromagnetic wave propagation in uniaxially anisotropic left-handed materials" (2002) Phys. Rev. B, 66, p. 0851081
  • Lakhtakia, A., Sherwin, J.A., "Orthorhombic materials and perfect lenses" (2003) Int. J. Infrared Millim. Waves, 24, pp. 19-23
  • Smith, D.R., Schurig, D., "Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors" (2003) Phys. Rev. Lett., 90, p. 0774051
  • Smith, D.R., Kolinko, P., Schurig, D., "Negative refraction in indefinite media" (2004) J. Opt. Soc. Am. B, 21, pp. 1032-1043
  • Eritsyan, O.S., "On the optical properties of anisotropic media in the presence of negative components of dielectric and (or) magnetic tensors" (2005) Crystallogn Rep., 50, pp. 465-470
  • Mackay, T.G., Lakhtakia, A., Depine, R.A., "Uniaxial dielectric media with hyperbolic dispersion relations" (2006) Microwave Opt. Technol. Lett., 48, pp. 363-367
  • Liu, Z., Xu, J., Lin, Z., "Omnidirectional reflection from a slab of uniaxially anisotropic negative refractive index materials" (2004) Opt. Commun., 240, pp. 19-27
  • Depine, R.A., Lakhtakia, A., "Diffraction by a grating made of an uniaxial dielectric magnetic medium exhibiting negative refraction" (2005) New J. Phys., 7, p. 158
  • Depine, R.A., Inchaussandague, M.E., Lakhtakia, A., "Application of the differential method to uniaxial gratings with an infinite number of refraction channels: Scalar case" (2006) Opt. Commun., 258, pp. 90-96
  • Lakhtakia, A., Varadan, V.K., Varadan, V.V., "Plane waves and canonical sources in a gyroelectromagnetic uniaxial medium" (1991) Int. J. Electron., 71, pp. 853-861
  • Lakhtakia, A., Varadan, V.K., Varadan, V.V., "Reflection and transmission of plane waves at the planar interface of a general uniaxial medium and free space" (1991) J. Mod. Opt., 38, pp. 649-657
  • Lütkepohl, H., (1996) Handbook of Matrices, , (Wiley)
  • Chen, H.C., (1983) Theory of Electromagnetic Waves: A Coordinate-Free Approach, , (McGraw-Hill)
  • Depine, R.A., Lakhtakia, A., Smith, D.R., "Enhanced diffraction by a rectangular grating made of a negative phase-velocity (or negative index) material" (2005) Phys. Lett. A, 337, pp. 155-160
  • Lakhtakia, A., McCall, M.W., "Counterposed phase velocity and energy-transport velocity vectors in a dielectric-magnetic uniaxial medium" (2004) Optik (Stuttgart), 115, pp. 28-30

Citas:

---------- APA ----------
Depine, R.A., Inchaussandague, M.E. & Lakhtakia, A. (2006) . Classification of dispersion equations for homogeneous, dielectric-magnetic, uniaxial materials. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 23(4), 949-955.
http://dx.doi.org/10.1364/JOSAA.23.000949
---------- CHICAGO ----------
Depine, R.A., Inchaussandague, M.E., Lakhtakia, A. "Classification of dispersion equations for homogeneous, dielectric-magnetic, uniaxial materials" . Journal of the Optical Society of America A: Optics and Image Science, and Vision 23, no. 4 (2006) : 949-955.
http://dx.doi.org/10.1364/JOSAA.23.000949
---------- MLA ----------
Depine, R.A., Inchaussandague, M.E., Lakhtakia, A. "Classification of dispersion equations for homogeneous, dielectric-magnetic, uniaxial materials" . Journal of the Optical Society of America A: Optics and Image Science, and Vision, vol. 23, no. 4, 2006, pp. 949-955.
http://dx.doi.org/10.1364/JOSAA.23.000949
---------- VANCOUVER ----------
Depine, R.A., Inchaussandague, M.E., Lakhtakia, A. Classification of dispersion equations for homogeneous, dielectric-magnetic, uniaxial materials. J Opt Soc Am A. 2006;23(4):949-955.
http://dx.doi.org/10.1364/JOSAA.23.000949