Abstract:
In this paper we prove the existence of nonnegative nontrivial solutions of the system with nonlinear coupling through the boundary given byunder suitable assumptions on the nonlinear terms f and g. For the proof we use a fixed-point argument and the key ingredient is a Liouville type theorem for a system of Laplace equations with nonlinear coupling through the boundary of power type in the half space.
Registro:
Documento: |
Artículo
|
Título: | Existence for an elliptic system with nonlinear boundary conditions via fixed-point methods |
Autor: | Bonder, J.F.; Rossi, J.D. |
Filiación: | Departamento de Matemática, FCEyN, UBA (1428) Buenos Aires, Argentina
|
Año: | 2001
|
Volumen: | 6
|
Número: | 1
|
Página de inicio: | 1
|
Página de fin: | 20
|
Título revista: | Advances in Differential Equations
|
Título revista abreviado: | Adv. Differ. Equ.
|
ISSN: | 10799389
|
Registro: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10799389_v6_n1_p1_Bonder |
Referencias:
- Berestycki, H., Niremberg, L., On the method of moving planes and the sliding method (1991) Bol. Soc. Bras. Mat., 22, pp. 1-37
- Boccardo, L., de Figueiredo, D.G., Some remarks on a system of quasilinear elliptic equations, , to appear
- Chipot, M., Shafrir, I., Fila, M., On the solutions to some elliptic equations with nonlinear Neumann boundary conditions (1996) Adv. Diff. Eq., 1 (1), pp. 91-110
- Clément, P., de Figueiredo, D.G., Mitidieri, E., Positive solutions of semilinear elliptic systems (1992) Comm. Part. Diff. Eq., 17, pp. 923-940
- Cosner, C., Positive solutions for superlinear elliptic systems without variational structure (1984) Nonlin. Anal. TMA, 8, pp. 1427-1436
- de Figueiredo, D.G., Positive solutions of semilinear elliptic equations (1982) Springer Lecture Notes in Mathematics, 957, pp. 34-87
- de Figueiredo, D.G., Semilinear elliptic systems: a survey of superlinear problems (1996) Resenhas IME-USP, 2, pp. 373-391
- de Figueiredo, D.G., Felmer, P.L., On superquadratic elliptic systems (1994) Trans. Amer. Math. Soc., 343, pp. 99-116
- de Figueiredo, D.G., Magalhães, C.A., On nonquadratic Hamiltonian elliptic systems (1996) Adv. Diff. Eq., 1 (5), pp. 881-898
- de Figueiredo, D.G., Lions, P.L., Nussbaum, R.D., A priori estimates and existence of positive solutions of semilinear elliptic equations (1982) J. Math. Pures et Appl., 61, pp. 41-63
- Ercolano, J., Schechter, M., Spectral theory for operators generated by elliptic boundary problems with eingenvalue parameter in boundary conditions I (1965) Comm. Pure and Appl. Math., 18, pp. 83-105
- Ercolano, J., Schechter, M., Spectral theory for operators generated by elliptic boundary problems with eingenvalue parameter in boundary conditions II (1965) Comm. Pure and Appl. Math., 18, pp. 397-414
- Felmer, P., Manásevich, R.F., de Thélin, F., Existence and uniqueness of positive solutions for certain quasilinear elliptic systems (1992) Comm. Par. Diff. Eq., 17, pp. 2013-2029
- Fernández Bonder, J., Rossi, J.D., Asymptotic behaviour for a parabolic system with nonlinear boundary conditions, , preprint
- Giaquinta, M., Giusti, E., Global C1,α- regularity for second order quasilinear elliptic equations in divergence form (1984) Jour. Reine u. Angew. Mathem., 351, pp. 55-65
- Gidas, B., Ni, W.M., Nirenberg, L., Symmetry and related properties via maximum principle (1979) Comm. Math. Phys., 68, pp. 209-243
- Gidas, B., Spruck, J., A priori bounds for positive solutions of nonlinear elliptic equations (1981) Comm. Part. Diff. Eq., 6, pp. 883-901
- Gilbarg, D., Trudinger, N.S., (1983) Elliptic Partial Differential Equations of Second Order, , Springer-Verlag, NY
- Hu, B., Yin, H.M., The profile near blow-up time for the solution of the heat equation with a nonlinear boundary condition (1995) Trans. Amer. Math. Soc., 346 (1), pp. 117-135
- Hu, B., Nonexistence of a positive solution of the Laplace equation with a nonlinear boundary condition (1994) Diff. and Int. Eq., 7 (2), pp. 301-313
- Li, C., Monotonicity and symmetry of solutions of fully nonlinear elliptic equations on bounded domains (1991) Comm. Partial Differential Equations, 16, pp. 491-526
- Lieberman, G.M., Hölder continuity of the gradient of solutions of uniformly parabolic equations with conormal boundary conditions (1987) Ann. di Math. Pura ed Appl., 148, pp. 77-99
- Lions, P.L., On the existence of positive solutions of semilinear elliptic equations (1982) SIAM Review, 24 (4), pp. 441-467
- Peletier, L.A., van der Vorst, R.C.A.M., Existence and non-existence of positive solutions of non-linear elliptic systems and the biharmonic equation (1992) Diff. and Int. Eq., 5 (4), pp. 747-767
Citas:
---------- APA ----------
Bonder, J.F. & Rossi, J.D.
(2001)
. Existence for an elliptic system with nonlinear boundary conditions via fixed-point methods. Advances in Differential Equations, 6(1), 1-20.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10799389_v6_n1_p1_Bonder [ ]
---------- CHICAGO ----------
Bonder, J.F., Rossi, J.D.
"Existence for an elliptic system with nonlinear boundary conditions via fixed-point methods"
. Advances in Differential Equations 6, no. 1
(2001) : 1-20.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10799389_v6_n1_p1_Bonder [ ]
---------- MLA ----------
Bonder, J.F., Rossi, J.D.
"Existence for an elliptic system with nonlinear boundary conditions via fixed-point methods"
. Advances in Differential Equations, vol. 6, no. 1, 2001, pp. 1-20.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10799389_v6_n1_p1_Bonder [ ]
---------- VANCOUVER ----------
Bonder, J.F., Rossi, J.D. Existence for an elliptic system with nonlinear boundary conditions via fixed-point methods. Adv. Differ. Equ. 2001;6(1):1-20.
Available from: https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10799389_v6_n1_p1_Bonder [ ]