Abstract:
For a C1 degree two latitude preserving endomorphism f of the 2-sphere, we show that for each n, f has at least 2n periodic points of period n.
Registro:
| Documento: |
Artículo
|
| Título: | Periodic points on the 2-sphere |
| Autor: | Pugh, C.; Shub, M. |
| Filiación: | Department of Mathematics, University of Chicago, 5734 S. University Ave., Chicago, IL 60637, United States Department of Mathematics, University of California Berkeley, 970 Evans Hall #3840, Berkeley, CA 94720, United States CONICET, IMAS, Universidad de Buenos Aires, Buenos Aires, Argentina Department of Mathematics, CUNY Graduate School, 365 Fifth Avenue, New York, NY 10016, United States
|
| Palabras clave: | Degree two; Latitude preserving; Periodic points; Smoothness; Two sphere |
| Año: | 2014
|
| Volumen: | 34
|
| Número: | 3
|
| Página de inicio: | 1171
|
| Página de fin: | 1182
|
| DOI: |
http://dx.doi.org/10.3934/dcds.2014.34.1171 |
| Título revista: | Discrete and Continuous Dynamical Systems- Series A
|
| Título revista abreviado: | Discrete Contin. Dyn. Syst. Ser A
|
| ISSN: | 10780947
|
| Registro: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10780947_v34_n3_p1171_Pugh |
Referencias:
- Gelfert, K., Wolf, C., On the distribution of periodic orbits (2010) Discrete and Continuous Dynamical Systems, 36, pp. 949-966
- Katok, A., (1980) Lyapunov Exponents, Entropy, and Periodic Points for Diffeomorphisms, 51, pp. 137-173. , Institute des Hautes Études Scientifiques, Publications Mathématiques
- Misiurewicz, M., Przytycki, F., Topological entropy and degree of smooth mappings (1977) Bull. Acad. Pol., 25, pp. 573-574
- Shub, M., All, most, dome differentiable dynamical systems (2006) Proceedings of the International Congress of Mathematicians, pp. 99-120. , Madrid, Spain, European Math. Society
- Shub, M., Sullivan, D., A remark on the lefschetz fixed point formula for differentiable maps (1974) Topology, 13, pp. 189-191
- Shub, M., Alexander cocycles and dynamics (1978) Asterisque, Societé Math. de France, pp. 395-413
Citas:
---------- APA ----------
Pugh, C. & Shub, M.
(2014)
. Periodic points on the 2-sphere. Discrete and Continuous Dynamical Systems- Series A, 34(3), 1171-1182.
http://dx.doi.org/10.3934/dcds.2014.34.1171---------- CHICAGO ----------
Pugh, C., Shub, M.
"Periodic points on the 2-sphere"
. Discrete and Continuous Dynamical Systems- Series A 34, no. 3
(2014) : 1171-1182.
http://dx.doi.org/10.3934/dcds.2014.34.1171---------- MLA ----------
Pugh, C., Shub, M.
"Periodic points on the 2-sphere"
. Discrete and Continuous Dynamical Systems- Series A, vol. 34, no. 3, 2014, pp. 1171-1182.
http://dx.doi.org/10.3934/dcds.2014.34.1171---------- VANCOUVER ----------
Pugh, C., Shub, M. Periodic points on the 2-sphere. Discrete Contin. Dyn. Syst. Ser A. 2014;34(3):1171-1182.
http://dx.doi.org/10.3934/dcds.2014.34.1171