Artículo

Moiola, C.P.; Luca, P.D.; Zalazar, F.; Cotignola, J.; Rodríguez-Seguí, S.A.; Gardner, K.; Meiss, R.; Vallecorsa, P.; Pignataro, O.; Mazza, O.; Vazquez, E.S.; De Siervi, A. "Prostate tumor growth is impaired by CtBP1 depletion in high-fat diet-fed mice" (2014) Clinical Cancer Research. 20(15):4086-4095
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Purpose: Clinical and epidemiologic data suggest that obesity is associated with more aggressive forms of prostate cancer, poor prognosis, and increased mortality. C-terminal-binding protein 1 (CtBP1) is a transcription repressor of tumor suppressor genes and is activated by NADH binding. High calorie intake decreases intracellular NAD+/NADH ratio. The aim of this work was to assess the effect of high-fat diet (HFD) and CtBP1 expression modulation over prostate xenograft growth. Experimental Design: We developed a metabolic syndrome-like disease in vivo model by feeding male nude mice with HFD during 16 weeks. Control diet (CD)-fed animals were maintained at the same conditions. Mice were inoculated with PC3 cells stable transfected with shCtBP1 or control plasmids. Genome-wide expression profiles and Gene Set Enrichment Analysis (GSEA) were performed from PC3. shCtBP1 versus PC3.pGIPZ HFD-fed mice tumors. Results: No significant differences were observed in tumor growth on CD-fed mice; however, we found that only 60% of HFD-fed mice inoculated with CtBP1-depleted cells developed a tumor. Moreover these tumors were significantly smaller than those generated by PC3.pGIPZ control xenografts. We found 823 genes differentially expressed in shCtBP1 tumors from HFD-fed mice. GSEA from expression dataset showed that most of these genes correspond to cell adhesion, metabolic process, and cell cycle. Conclusions: Metabolic syndrome-like diseases and CtBP1 expression cooperate to induce prostate tumor growth. Hence, targeting of CtBP1 expression might be considered for prostate cancer management and therapy in the subset of patients with metabolic syndromes. © 2014 American Association for Cancer Research.

Registro:

Documento: Artículo
Título:Prostate tumor growth is impaired by CtBP1 depletion in high-fat diet-fed mice
Autor:Moiola, C.P.; Luca, P.D.; Zalazar, F.; Cotignola, J.; Rodríguez-Seguí, S.A.; Gardner, K.; Meiss, R.; Vallecorsa, P.; Pignataro, O.; Mazza, O.; Vazquez, E.S.; De Siervi, A.
Filiación:Laboratorio de Oncología Molecular y Nuevos Blancos Terapeuticos, IBYME-CONICET, Vuelta de Obligado 2490, Buenos Aires, C1428ADN, Argentina
Laboratorio de Inflamacion y Cancer, Departamento de Química Biologica, Facultad de Ciencias Exactas y Naturales (FCEN), Buenos Aires, Argentina
Laboratorio de Endocrinología Molecular y Transduccion de Senales, Departamento de Química Biologica, Facultad de Ciencias Exactas y Naturales (FCEN), Buenos Aires, Argentina
Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
Departamento de Patología, Instituto de Estudios Oncologicos, Academia Nacional de Medicina, Buenos Aires, Argentina
Hospital de Clínicas Jose de San Martín, Buenos Aires, Argentina
Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
Palabras clave:carboxy terminal binding protein 1; tumor suppressor protein; unclassified drug; alcohol dehydrogenase; C-terminal binding protein; DNA binding protein; messenger RNA; sex hormone; small interfering RNA; tumor marker; animal cell; animal experiment; animal model; animal tissue; article; cancer inhibition; cell adhesion; cell cycle; controlled study; gene expression; gene identification; genetic analysis; in vitro study; in vivo study; lipid diet; male; metabolism; mouse; nonhuman; priority journal; prostate cancer; protein depletion; protein function; adverse effects; animal; antagonists and inhibitors; apoptosis; cell proliferation; cell transformation; chromatin immunoprecipitation; DNA microarray; drug effects; drug screening; enzyme immunoassay; gene expression profiling; genetics; human; lipid diet; metabolic syndrome X; nude mouse; obesity; pathology; Prostatic Neoplasms; real time polymerase chain reaction; reverse transcription polymerase chain reaction; tumor cell culture; Western blotting; Alcohol Oxidoreductases; Animals; Apoptosis; Blotting, Western; Cell Adhesion; Cell Proliferation; Cell Transformation, Neoplastic; Chromatin Immunoprecipitation; Diet, High-Fat; DNA-Binding Proteins; Gene Expression Profiling; Gonadal Steroid Hormones; Humans; Immunoenzyme Techniques; Male; Metabolic Syndrome X; Mice; Mice, Nude; Obesity; Oligonucleotide Array Sequence Analysis; Prostatic Neoplasms; Real-Time Polymerase Chain Reaction; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; RNA, Small Interfering; Tumor Cells, Cultured; Tumor Markers, Biological; Xenograft Model Antitumor Assays
Año:2014
Volumen:20
Número:15
Página de inicio:4086
Página de fin:4095
DOI: http://dx.doi.org/10.1158/1078-0432.CCR-14-0322
Título revista:Clinical Cancer Research
Título revista abreviado:Clin. Cancer Res.
ISSN:10780432
CODEN:CCREF
CAS:alcohol dehydrogenase, 9031-72-5; Alcohol Oxidoreductases; C-terminal binding protein; DNA-Binding Proteins; Gonadal Steroid Hormones; RNA, Messenger; RNA, Small Interfering; Tumor Markers, Biological
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10780432_v20_n15_p4086_Moiola

Referencias:

  • Jemal, A., Bray, F., Center, M.M., Ferlay, J., Ward, E., Forman, D., Global cancer statistics (2011) CA Cancer J Clin, 61, pp. 69-90
  • Cao, Y., Ma, J., Body mass index, prostate cancer-specific mortality, and biochemical recurrence: A systematic review and meta-analysis (2011) Cancer Prev Res, 4, pp. 486-501
  • Koubova, J., Guarente, L., How does calorie restriction work? (2003) Genes Dev, 17, pp. 313-321
  • Byun, J.S., Gardner, K., C-terminal binding protein: A molecular link between metabolic imbalance and epigenetic regulation in breast cancer (2013) Int J Cell Biol, 2013, p. 647975
  • Schaeper, U., Boyd, J.M., Verma, S., Uhlmann, E., Subramanian, T., Chinnadurai, G., Molecular cloning and characterization of a cellular phosphoprotein that interacts with a conserved C-terminal domain of adenovirus E1A involved in negative modulation of oncogenic transformation (1995) Proc Natl Acad Sci u S A, 92, pp. 10467-10471
  • Chinnadurai, G., The transcriptional corepressor CtBP: A foe of multiple tumor suppressors (2009) Cancer Res, 69, pp. 731-734
  • Fjeld, C.C., Birdsong, W.T., Goodman, R.H., Differential binding of NAD+ and NADH allows the transcriptional corepressor carboxyl-terminal binding protein to serve as a metabolic sensor (2003) Proc Natl Acad Sci u S A, 100, pp. 9202-9207
  • Di, L.J., Fernandez, A.G., De Siervi, A., Longo, D.L., Gardner, K., Transcriptional regulation of BRCA1 expression by a metabolic switch (2010) Nat Struct Mol Biol, 17, pp. 1406-1413
  • Mroz, E.A., Baird, A.H., Michaud, W.A., Rocco, J.W., COOH-terminal binding protein regulates expression of the p16INK4A tumor suppressor and senescence in primary human cells (2008) Cancer Res, 68, pp. 6049-6053
  • Zhang, Q., Wang, S.Y., Fleuriel, C., Leprince, D., Rocheleau, J.V., Piston, D.W., Metabolic regulation of SIRT1 transcription via a HIC1: CtBP corepressor complex (2007) Proc Natl Acad Sci u S A, 104, pp. 829-833
  • Grooteclaes, M., Deveraux, Q., Hildebrand, J., Zhang, Q., Goodman, R.H., Frisch, S.M., C-terminal-binding protein corepresses epithelial and proapoptotic gene expression programs (2003) Proc Natl Acad Sci u S A, 100, pp. 4568-4573
  • Wang, R., Asangani, I.A., Chakravarthi, B.V., Ateeq, B., Lonigro, R.J., Cao, Q., Role of transcriptional corepressor CtBP1 in prostate cancer progression (2012) Neoplasia, 14, pp. 905-914
  • Zhang, Q., Wang, S.Y., Nottke, A.C., Rocheleau, J.V., Piston, D.W., Goodman, R.H., Redox sensor CtBP mediates hypoxia-induced tumor cell migration (2006) Proc Natl Acad Sci u S A, 103, pp. 9029-9033
  • Thalmann, G.N., Anezinis, P.E., Chang, S.M., Zhau, H.E., Kim, E.E., Hopwood, V.L., Androgen-independent cancer progression and bone metastasis in the LNCaP model of human prostate cancer (1994) Cancer Res, 54, pp. 2577-2581
  • De Siervi, A., De Luca, P., Byun, J.S., Di, L.J., Fufa, T., Haggerty, C.M., Transcriptional autoregulation by BRCA1 (2010) Cancer Res, 70, pp. 532-542
  • De Siervi, A., De Luca, P., Moiola, C., Gueron, G., Tongbai, R., Chandramouli, G., Identification of new Rel/NFkB regulatory networks by focused genome location analysis (2009) Cell Cycle, 8, pp. 2093-2100
  • De Luca, P., Moiola, C.P., Zalazar, F., Gardner, K., Vazquez, E.S., De Siervi, A., BRCA1 and p53 regulate critical prostate cancer pathways (2013) Prostate Cancer Prostatic Dis, 16, pp. 233-238
  • Moiola, C., De Luca, P., Gardner, K., Vazquez, E., De Siervi, A., Cyclin T1 overexpression induces malignant transformation and tumor growth (2010) Cell Cycle, 9, pp. 3119-3126
  • De Luca, P., Vazquez, E.S., Moiola, C.P., Zalazar, F., Cotignola, J., Gueron, G., BRCA1 loss induces GADD153-mediated doxorubicin resistance in prostate cancer (2011) Mol Cancer Res, 9, pp. 1078-1090
  • Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A., Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles (2005) Proc Natl Acad Sci u S A, 102, pp. 15545-15550
  • Deng, H., Li, F., Li, H., Deng, Y., Liu, J., Wang, D., CtBP1 overexpression in keratinocytes perturbs skin homeostasis (2013) J Invest Dermatol, 134, pp. 1323-1331
  • Lloyd, J.C., Antonelli, J.A., Phillips, T.E., Masko, E.M., Thomas, J.A., Poulton, S.H., Effect of isocaloric low fat diet on prostate cancer xenograft progression in a hormone deprivation model (2010) J Urol, 183, pp. 1619-1624
  • Mavropoulos, J.C., Buschemeyer III, W.C., Tewari, A.K., Rokhfeld, D., Pollak, M., Zhao, Y., The effects of varying dietary carbohydrate and fat content on survival in a murine LNCaP prostate cancer xenograft model (2009) Cancer Prev Res, 2, pp. 557-565
  • Venkateswaran, V., Haddad, A.Q., Fleshner, N.E., Fan, R., Sugar, L.M., Nam, R., Association of diet-induced hyperinsulinemia with accelerated growth of prostate cancer (LNCaP) xenografts (2007) J Natl Cancer Inst, 99, pp. 1793-1800
  • Wang, Y., Corr, J.G., Thaler, H.T., Tao, Y., Fair, W.R., Heston, W.D., Decreased growth of established human prostate LNCaP tumors in nude mice fed a low-fat diet (1995) J Natl Cancer Inst, 87, pp. 1456-1462
  • Takayama, K., Horie-Inoue, K., Katayama, S., Suzuki, T., Tsutsumi, S., Ikeda, K., Androgen-responsive long noncoding RNA CTBP1-AS promotes prostate cancer (2013) EMBO J, 32, pp. 1665-1680
  • Jack, B.H., Pearson, R.C., Crossley, M., C-terminal binding protein: A metabolic sensor implicated in regulating adipogenesis (2011) Int J Biochem Cell Biol, 43, pp. 693-696

Citas:

---------- APA ----------
Moiola, C.P., Luca, P.D., Zalazar, F., Cotignola, J., Rodríguez-Seguí, S.A., Gardner, K., Meiss, R.,..., De Siervi, A. (2014) . Prostate tumor growth is impaired by CtBP1 depletion in high-fat diet-fed mice. Clinical Cancer Research, 20(15), 4086-4095.
http://dx.doi.org/10.1158/1078-0432.CCR-14-0322
---------- CHICAGO ----------
Moiola, C.P., Luca, P.D., Zalazar, F., Cotignola, J., Rodríguez-Seguí, S.A., Gardner, K., et al. "Prostate tumor growth is impaired by CtBP1 depletion in high-fat diet-fed mice" . Clinical Cancer Research 20, no. 15 (2014) : 4086-4095.
http://dx.doi.org/10.1158/1078-0432.CCR-14-0322
---------- MLA ----------
Moiola, C.P., Luca, P.D., Zalazar, F., Cotignola, J., Rodríguez-Seguí, S.A., Gardner, K., et al. "Prostate tumor growth is impaired by CtBP1 depletion in high-fat diet-fed mice" . Clinical Cancer Research, vol. 20, no. 15, 2014, pp. 4086-4095.
http://dx.doi.org/10.1158/1078-0432.CCR-14-0322
---------- VANCOUVER ----------
Moiola, C.P., Luca, P.D., Zalazar, F., Cotignola, J., Rodríguez-Seguí, S.A., Gardner, K., et al. Prostate tumor growth is impaired by CtBP1 depletion in high-fat diet-fed mice. Clin. Cancer Res. 2014;20(15):4086-4095.
http://dx.doi.org/10.1158/1078-0432.CCR-14-0322