Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

2-Mercaptopyridine N-oxide (pyrithione, PTOH) along with several transition metal ions forms coordination compounds displaying notable biological activities. Gas-phase complexes formed between pyrithione and manganese (II), cobalt (II), nickel (II), copper (II), and zinc (II) were investigated by infusion in the electrospray source of a quadrupole-time of flight mass spectrometer. Remarkably, positive ion mode spectra displayed the singly charged metal adduct ion [C10H8MN2O2S2]2+ ([M(PTO)2]+• or [M(DPTO)]+•), where DPTO is dipyrithione, 2,2′-dithiobis(pyridine N-oxide), among the most abundant peaks, implying a change in the oxidation state of whether the metal ion or the ligands. In addition, doubly charged ions were recognized as metal adduct ions containing DPTO ligands, [M(DPTO)n]2+. Generation of [M(PTO)2]+• / [M(DPTO)]+• could be traced by CID of [M(DPTO)2]2+, by observation of the sequential losses of a charged (PTO+) and a radical (PTO•) deprotonated pyrithione ligand. The fragmentation pathways of [M(PTO)2]+• / [M(DPTO)]+• were compared among the different metal ions, and some common features were noticed. Density functional theory (DFT) calculations were employed to study the structures of the observed adduct ions, and especially, to decide in the adduct ion [M(PTO)2]+• / [M(DPTO)]+• whether the ligands are 2 deprotonated pyrithiones or a single dipyrithione as well as the oxidation state of the metal ion in the complex. Characterization of gas-phase pyrithione metal ion complexes becomes important, especially taking into account the presence of a redox-active ligand in the complexes, because redox state changes that produce new species can have a marked effect on the overall toxicological/biological response elicited by the metal system. Copyright © 2017 John Wiley & Sons, Ltd.

Registro:

Documento: Artículo
Título:A mass spectrometry and DFT study of pyrithione complexes with transition metals in the gas phase
Autor:Butler, M.; Cabrera, G.M.
Filiación:Departamento de Química Orgánica, Ciudad Universitaria, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Pabellón II, 3° piso, Buenos Aires, C1428EHA, Argentina
Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, CONICET—Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos aplicados a la Química Orgánica (UMYMFOR), Pabellón II, 3° piso, Buenos Aires, C1428EHA, Argentina
Palabras clave:density functional theory; electrospray ionization mass spectrometry; metal complexes; pyrithione; redox-active ligand; Cobalt compounds; Complexation; Density functional theory; Drug products; Electrospray ionization; Gases; Ionization of gases; Ligands; Mass spectrometers; Mass spectrometry; Metal complexes; Metal ions; Positive ions; Redox reactions; Spectrometry; Transition metal compounds; Transition metals; Zinc compounds; Coordination compounds; Doubly charged ions; Electrospray ionization mass spectrometry; Fragmentation pathways; Metal-ion complexes; pyrithione; Quadrupole-time-of-flight mass spectrometer; Redox-active ligand; Metals; cobalt complex; copper complex; manganese; metal complex; nickel complex; pyridine; pyrithione; transition element; zinc complex; Article; chemical structure; collisionally activated dissociation; comparative study; controlled study; density functional theory; electrochemical analysis; electrospray mass spectrometry; gas; mass spectrometer; oxidation; oxidation reduction state; priority journal; proton transport; quadrupole mass spectrometry; scientific literature; time of flight mass spectrometry
Año:2017
Volumen:52
Número:11
Página de inicio:728
Página de fin:738
DOI: http://dx.doi.org/10.1002/jms.3976
Título revista:Journal of Mass Spectrometry
Título revista abreviado:J. Mass Spectrom.
ISSN:10765174
CODEN:JMSPF
CAS:manganese, 16397-91-4, 7439-96-5; pyridine, 110-86-1; pyrithione, 1121-30-8, 1121-31-9
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10765174_v52_n11_p728_Butler

Referencias:

  • Walter, W., Schaumann, E., The chemistry of thiohydroxamic acids (1971) Synthesis, 3, pp. 111-130
  • Takeshita, S., Kawamura, I., Yasuno, T., Amelioration of insulin resistance in diabetic ob/ob mice by a new type of orally active insulin–mimetic vanadyl complex: bis (1-oxy-2-pyridinethiolato)oxovanadium(IV) with VO(S2O2) coordination mode (2001) J Inorg Biochem, 85, pp. 179-186
  • Mann, J.J., Fraker, P.J., Zinc pyrithione induces apoptosis and increases expression of Bim (2005) Apoptosis, 10, pp. 369-379
  • Helsel, M.E., Franz, K.J., Pharmacological activity of metal binding agents that alter copper bioavailability (2015) Dalton Trans, 44, pp. 8760-8770
  • Robinson, M.A., Complexes of 1-hydroxy 2-pyridinethione (1964) J Inorg Nucl Chem, 26, pp. 1277-1281
  • Barnett, B.L., Kretschmar, H.C., Hartman, F.A., Structural characterization of bis(N-oxopyridine-2-thionato)zinc(II) (1977) Inorg Chem, 16, pp. 1834-1838
  • Bond, A.D., Feeder, N., Teat, S.J., Jones, W., Bis[1-hydroxypyridine-2(1H)-thionato-S,O]copper(II) (2001) Acta Crystallogr, Sect C: Cryst Struct Commun, 57, pp. 1157-1158
  • Chen, X., Hu, Y., Wu, D., Weng, L., Kang, B., Syntheses and electrochemistry of some transition metal complexes with 2-mercaptopyridine N-oxide and crystal structure of bis(2-mercaptopyridine N-oxide)nickel(II) (1991) Polyhedron, 10, pp. 2651-2657
  • Doose, C.A., Szaleniec, M., Behrend, P., Muller, A., Jastorff, B., Chromatographic behavior of pyrithiones (2004) J Chromatogr A, 1052, pp. 103-110
  • Sakkas, V.A., Shibata, K., Yamaguchi, Y., Sugasawa, S., Albanis, T., Aqueous phototransformation of zinc pyrithione. Degradation kinetics and byproduct identification by liquid chromatography-atmospheric pressure chemical ionisation mass spectrometry (2007) J Chromatogr A, 1144, pp. 175-182
  • Moriwaki, H., Okabayashi, M., Watanabe, T., Kawasaki, H., Arakawa, R., Electrospray ionization mass spectrometric observation of ligand exchange of zinc pyrithione with amino acids (2009) Rapid Commun Mass Spectrom, 23, pp. 2161-2166
  • Kakkar, R., Dua, A., Gahlot, P., Metal ion complexes of thioformin: a density functional study (2007) Polyhedron, 26, pp. 5301-5308
  • Virca, C.N., McCormick, T.M., DFT analysis into the intermediates of nickel pyridinethiolate catalysed proton reduction (2015) Dalton Trans, 44, pp. 14333-14340
  • Kang, B.S., Xu, Y.J., Peng, J.H., Syntheses and electrochemistry of some transition metal complexes with 2-mercaptopyridine N-oxide and crystal structure of bis(2-mercaptopyridine N-oxide)nickel(II) (1991) Polyhedron, 10, pp. 2651-2657
  • Hoeschele, J.D., Turner, J.E., England, M.W., Inorganic concepts relevant to metal binding, activity, and toxicity in a biological system (1991) Sci Total Environ, 109-110, pp. 477-492
  • Li, S.A., Li, R.L., Zhang, Z.M., Zhu, K., Wang, G.J., Improved preparation of 2,2-dithiobis(pyridine-N-oxide) (2012) Adv Mat Res, 554-556, pp. 868-873
  • Kubec, R., Krejcova, P., Simek, P., Vaclavik, L., Hajslova, J., Schraml, J., Precursors and formation of pyrithione and other pyridyl-containing sulfur compounds in drumstick onion, Allium stipitatum (2011) J Agric Food Chem, 59, pp. 5763-5770
  • Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Fox, D.J., (2009) Gaussian 09, , Revision D.01, Gaussian, Inc., Wallingford CT
  • Becke, A.D., Density-functional thermochemistry. III. The role of exact exchange (1993) J Chem Phys, 98, pp. 5648-5652
  • Lee, C.T., Yang, W.T., Parr, R.G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density (1998) Phys Rev B: Condens Matter, 37, pp. 785-789
  • Burke, L.A., Fazen, P.J., Consideration of spin states in determining the structure and decomposition of the transition metal pentazoles FeClN5, Fe(N5)2, Fe(H2O)4ClN5, and Fe(NH3)4ClN5 (2004) Chem Commun, 9, pp. 1082-1083
  • Mulliken, R.S., Electronic population analysis on LCAO-MO molecular wave functions. I (1955) J Chem Phys, 23, pp. 1833-1840
  • Reed, A.E., Curtiss, L.A., Weinhold, F., Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint (1988) Chem Rev, 88, pp. 899-926
  • Van Berkel, G.J., Kertesz, V., (2012) Electrospray and MALDI Mass Spectrometry: Fundamentals, Instrumentation, Practicalities, and Biological Applications, pp. 75-122. , In, Cole RB, ed., Second, ed., Hoboken, New Jersey, John Wiley & Sons, Inc
  • Lesslie, M., Meyer, J.A., Osburn, S., Otun, S., Ryzhov, V., The formation of resonance-stabilized sulfur-based radical cations and their gas-phase reactivity (2015) Int J Mass Spectrom, 378, pp. 312-321
  • Tuytten, R., Lemiere, F., Van Dongen, W., Intriguing mass spectrometric behavior of guanosine under low energy collision-induced dissociation: H2O adduct formation and gas-phase reactions in the collision cell (2005) J Am Soc Mass Spectrom, 16, pp. 1291-1304
  • Neta, P., Farahani, M., Simon-Manso, Y., Liang, Y., Yang, X., Stein, S.E., Unexpected peaks in tandem mass spectra due to reaction of product ions with residual water in mass spectrometer collision cells (2014) Rapid Commun Mass Spectrom, 28, pp. 2645-2660
  • Manivannan, V., Dutta, S., Basu, P., Chakravorty, A., Variable valence MnO3S3 species. The case of tris(1-hydroxy-2-pyridinethionato)manganese(II,III,IV) and its structural correlation with the cobalt(III) analog (1993) Inorg Chem, 32, pp. 769-771
  • Liaw, W.-F., Hsieh, C.-H., Peng, S.-M., Lee, G.-H., S-S bond-activation of diorganyl disulfide by anionic [Mn(CO)5]−: Crystal structures of [MnII(−SC5H4NO)3]− and [(CO)3Mn(μ-SR)3Co(μ-SR)3Mn(CO)3]− (R=C6H4NHCOPh) (2002) Inorg Chim Acta, 332, pp. 153-159
  • Sanmartin, J., Bermejo, M.R., Garcia-Vazquez, J.A., Direct electrochemical synthesis of N-oxopyridine-2-thionato complexes of nickel(II), cobalt(II) and cobalt(III) (1993) Transition Met Chem, 18, pp. 187-190
  • Balch, A.L., Electron-transfer series of the [M-O2S2] type. Complexes derived from o-mercaptophenol, 1-mercapto-2-naphthol, and 1-hydroxy-2-pyridinethione (1969) J Am Chem Soc, 91, pp. 1948-1953
  • Jeanvoine, Y., Spezzia, R., Mn2+-, Fe2+-, Co2+-, Ni2+-, Cu2+-, and Zn2+-binding chalcogen-chalcogen bridges: a compared MP2 and B3LYP study (2009) J Phys Chem A, 113, pp. 7878-7887
  • Webster, A.J., Mueller, C.M., Foegen, N.P., Oxidation states “naturally”: a natural bond orbital method for determining transition metal oxidation states (2016) Polyhedron, 114, pp. 128-132
  • Broering, E.P., Dillon, S., Gale, E.M., Accessing Ni(III)-thiolate versus Ni(II)-thiyl bonding in a family of Ni-N2S2 synthetic models of NiSOD (2015) Inorg Chem, 54, pp. 3815-3828
  • McWeeny, R., (1992) Methods of Molecular Quantum Mechanics, , London, Academic Press

Citas:

---------- APA ----------
Butler, M. & Cabrera, G.M. (2017) . A mass spectrometry and DFT study of pyrithione complexes with transition metals in the gas phase. Journal of Mass Spectrometry, 52(11), 728-738.
http://dx.doi.org/10.1002/jms.3976
---------- CHICAGO ----------
Butler, M., Cabrera, G.M. "A mass spectrometry and DFT study of pyrithione complexes with transition metals in the gas phase" . Journal of Mass Spectrometry 52, no. 11 (2017) : 728-738.
http://dx.doi.org/10.1002/jms.3976
---------- MLA ----------
Butler, M., Cabrera, G.M. "A mass spectrometry and DFT study of pyrithione complexes with transition metals in the gas phase" . Journal of Mass Spectrometry, vol. 52, no. 11, 2017, pp. 728-738.
http://dx.doi.org/10.1002/jms.3976
---------- VANCOUVER ----------
Butler, M., Cabrera, G.M. A mass spectrometry and DFT study of pyrithione complexes with transition metals in the gas phase. J. Mass Spectrom. 2017;52(11):728-738.
http://dx.doi.org/10.1002/jms.3976