Artículo

Blake, M.G.; Boccia, M.M.; Krawczyk, M.C.; Delorenzi, A.; Baratti, C.M. "Choline reverses scopolamine-induced memory impairment by improving memory reconsolidation" (2012) Neurobiology of Learning and Memory. 98(2):112-121
La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

It is widely known that pre-training systemic administration of the muscarinic antagonist scopolamine (SCP) (0.5mg/kg, i.p.) leads to anterograde memory impairment in retention tests. The administration of the α7-nicotinic receptor agonist choline (Ch) in the dorsal hippocampus (0.8μg/hippocampus) immediately after memory reactivation allowed recovery from scopolamine-induced memory impairment. This effect of Ch was time-dependent, and retention performance was not affected in drug-treated mice that were not subjected to memory reactivation, suggesting that the performance effects are not due to non-specific effects of the drug. The effects of Ch also depended on the age of the reactivated memory. Altogether, our results suggest that Ch exerts its effects by modulating memory reconsolidation, and that the memory impairment induced by low doses of SCP is a memory expression failure and not a storage deficit. Therefore, reconsolidation, among other functions, might serve to change memory expression in later tests. Summarizing, our results open new avenues about the behavioral significance and the physiological functions of memory reconsolidation, providing new strategies for recovering memories from some types of amnesia. © 2012 Elsevier Inc.

Registro:

Documento: Artículo
Título:Choline reverses scopolamine-induced memory impairment by improving memory reconsolidation
Autor:Blake, M.G.; Boccia, M.M.; Krawczyk, M.C.; Delorenzi, A.; Baratti, C.M.
Filiación:Laboratorio de Neurofarmacología de los Procesos de Memoria, Cátedra de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
Laboratorio de Neurobiología de la Memoria, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
Palabras clave:Cholinergic system; Memory expression; Memory reconsolidation; Memory retrieval; Scopolamine-induced amnesia; choline bitartrate; scopolamine; animal experiment; animal model; article; behavior; brain function; controlled study; drug effect; male; memory consolidation; memory disorder; mental performance; mental task; mental test; mouse; neuromodulation; nonhuman; time; treatment response; Animals; Avoidance Learning; Choline; Hippocampus; Male; Memory; Memory Disorders; Mice; Muscarinic Antagonists; Nicotinic Agonists; Nootropic Agents; Retention (Psychology); Scopolamine Hydrobromide; Time Factors
Año:2012
Volumen:98
Número:2
Página de inicio:112
Página de fin:121
DOI: http://dx.doi.org/10.1016/j.nlm.2012.07.001
Título revista:Neurobiology of Learning and Memory
Título revista abreviado:Neurobiol. Learn. Mem.
ISSN:10747427
CODEN:NLMEF
CAS:choline bitartrate, 87-67-2; scopolamine, 138-12-5, 51-34-3, 55-16-3; Choline, 62-49-7; Muscarinic Antagonists; Nicotinic Agonists; Nootropic Agents; Scopolamine Hydrobromide, 51-34-3
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10747427_v98_n2_p112_Blake

Referencias:

  • Alberini, C.M., Mechanisms of memory stabilization: Are consolidation and reconsolidation similar or distinct processes? (2005) Trends in Neuroscience, 28, pp. 51-56
  • Alberini, C.M., Milekic, M.H., Tronel, S., Mechanisms of memory stabilization and de-stabilization (2006) Cellular and Molecular Life Sciences, 63 (9), pp. 999-1008
  • Alberini, C.M., The role of reconsolidation and the dynamic process of long-term memory formation and storage (2011) Frontiers in Behavioral Neuroscience, 5, pp. 1-10
  • Albuquerque, E.X., Pereira, E.F.R., Alkongdon, M., Rogers, S.W., Mammalian nicotinic acetylcholine receptors: From structure to function (2009) Physiological Reviews, 89 (1), pp. 73-120
  • Baratti, C.M., Boccia, M.M., Blake, M.G., Acosta, G.B., Reactivated memory of an inhibitory avoidance response in mice is sensitive to a nitric oxide synthase inhibitor (2008) Neurobiology of Learning and Memory, 89 (4), pp. 426-440
  • Baratti, C.M., Boccia, M.M., Blake, M.G., Pharmacological effects and behavioral interventions on memory consolidation and reconsolidation (2009) Brazilian Journal of Medical and Biological Research, 42 (2), pp. 148-154
  • Bartus, R.T., Dean, R.L., Beer, B., Lippa, A.S., The cholinergic hypothesis of geriatric memory dysfunction (1982) Science, 217 (4558), pp. 408-414
  • Berón de Astrada, M., Maldonado, H., Two related forms of long-term habituation in the crab Chasmagnathus are differentially affected by scopolamine (1999) Pharmacology, Biochemistry, and Behavior, 63 (1), pp. 109-118
  • Blake, M.G., Boccia, M.M., Baratti, C.M., Behavioral differences on memory retrieval between two variants of step-through inhibitory avoidance task in mice (2008) Neuroscience Letters, 444 (1), pp. 102-105
  • Blake, M.G., Boccia, M.M., Krawczyk, M.C., Baratti, C.M., Scopolamine prevents retrograde memory interference between two different learning tasks (2011) Physiology and Behavior, 102 (3-4), pp. 332-337
  • Boccia, M.M., Blake, M.G., Acosta, G.B., Baratti, C.M., Memory consolidation and reconsolidation of an inhibitory avoidance response in mice. Effects of i.c.v. injections of hemicholinium-3 (2004) Neuroscience, 124 (4), pp. 735-741
  • Boccia, M.M., Blake, M.G., Acosta, G.B., Baratti, C.M., Post-retrieval effects of icv infusions of hemicholinium in mice are dependent on the age of the original memory (2006) Learning and Memory, 13 (3), pp. 376-381
  • Boccia, M.M., Freudenthal, R., Blake, M.M., de la Fuente, V., Acosta, G.B., Baratti, C.M., Activation of hippocampal nuclear factor-κB by retrieval is required for memory reconsolidation (2007) The Journal of Neuroscience, 27 (49), pp. 13436-13445
  • Boccia, M.M., Blake, M.G., Krawczyk, M.C., Baratti, C.M., Hippocampal α7 nicotinic receptors modulate memory reconsolidation of an inhibitory avoidance task in mice (2010) Neuroscience, 171 (2), pp. 531-543
  • Bogacz, R., Optimal decision-making theories: Linking neurobiology with behavior (2007) Trends in Cognitive Sciences, 11 (3), pp. 118-125
  • Cahill, L., McGaugh, J.L., Weinberger, N.M., The neurobiology of learning and memory: Some reminders to remember (2001) Trends in Neurosciences, 24 (10), pp. 578-581
  • Clark, L., Cools, R., Robbins, T.W., The neuropsychology of ventral prefrontal cortex: Decision-making and reversal learning (2004) Brain and Cognition, 55 (1), pp. 41-53
  • Corkin, S., What's new with the amnesic patient H.M.? (2002) Nature Reviews Neuroscience, 3 (2), pp. 153-160
  • Court, J., Martin-Ruiz, C., Piggott, M., Spurden, D., Griffiths, M., Perry, E., Nicotinic receptor abnormalities in Alzheimer's disease (2001) Biological Psychiatry, 49 (3), pp. 175-184
  • Decker, M.W., McGaugh, J.L., Effects of concurrent manipulations of cholinergic and noradrenergic function on learning and retention in mice (1989) Brain Research, 477 (1-2), pp. 29-37
  • Decker, M.W., Tran, T., McGaugh, J.L., A comparison of the effects of scopolamine and diazepam on acquisition and retention of inhibitory avoidance in mice (1990) Psychopharmacology (Berl), 100 (4), pp. 515-521
  • Dudai, Y., Reconsolidation: The advantage of being refocused (2006) Current Opinion in Neurobiology, 16 (2), pp. 174-178
  • Ebert, U., Kirch, W., Scopolamine model of dementia: Electroencephalogram findings and cognitive performance (1998) European Journal of Clinical Investigation, 28 (11), pp. 944-949
  • Flurkey, K., Currer, J.M., Harrison, D.E., The mouse in aging research (2007) The mouse in biomedical research, pp. 637-672. , Elsevier, Burlington, J.G. Fox (Ed.)
  • Francis, P.T., Palmer, A.M., Snape, M., Wilcock, G.K., The cholinergic hypothesis of Alzheimer's disease: A review of progress (1999) Journal of Neurology, Neurosurgery, and Psychiatry, 66 (2), pp. 137-147
  • Franklin, K.B.J., Paxinos, G., (1997) The mouse brain in stereotaxic coordinates, , Academic Press, London
  • Frumin, M.J., Herekar, V.R., Jarvik, M.E., Amnesic actions of diazepam and scopolamine in man (1976) Anesthesiology, 45 (4), pp. 406-412
  • Ghoneim, M.M., Mewaldt, S.P., Effects of diazepam and scopolamine on storage, retrieval and organizational processes in memory (1975) Psychopharmacologia, 44 (3), pp. 257-262
  • Ghoneim, M.M., Mewaldt, S.P., Studies on human memory: The interactions of diazepam, scopolamine, and physostigmine (1977) Psychopharmacology (Berl), 52 (1), pp. 1-6
  • Giacobini, E., Cholinergic receptors in human brain: Effects of aging and Alzheimer disease (1990) Journal of Neuroscience Research, 27 (4), pp. 548-560
  • Gold, P.E., Haycock, J.W., Marri, J., McGaugh, J.L., Retrograde amnesia and the "reminder effect": An alternative interpretation (1973) Science, 180 (4091), pp. 1199-1201
  • Gold, P.E., van Buskirk, R., Effects of posttrial hormone injections on memory processes (1976) Hormones and Behavior, 7 (4), pp. 509-517
  • Hasselmo, M.E., Stern, C.E., Mechanisms underlying working memory for novel information (2006) Trends in Cognitive Sciences, 10 (11), pp. 487-493
  • Hasselmo, M.E., Sarter, M., Modes and models of forebrain cholinergic neuromodulation of cognition (2011) Neuropsychopharmacology, 36 (1), pp. 52-73
  • Haycock, J.W., Gold, P.E., Macri, J., McGaugh, J.L., Noncontingent footshock attenuation of retrograde amnesia: A generalization effect (1973) Physiology and Behavior, 11 (1), pp. 99-102
  • Izquierdo, I., Mechanism of action of scopolamine as an amnestic (1989) Trends in Pharmacological Sciences, 10 (5), pp. 175-177
  • Izquierdo, I., McGaugh, J.L., Behavioural pharmacology and its contribution to the molecular basis of memory consolidation (2000) Behavioural Pharmacology, 11 (7-8), pp. 517-534
  • Khader, P.H., Pachur, T., Meier, S., Bien, S., Jost, K., Rösler, F., Memory-based decision-making with heuristics: Evidence for a controlled activation of memory representations (2011) Journal of Cognitive Neuroscience, 23 (11), pp. 3540-3554
  • Mattson, M.P., Calabrese, E.J., Hormesis (2010) A revolution in Biology, Toxicology and Medicine, , Springer, New York
  • McGaugh, J.L., Time-dependent processes in memory storage (1966) Science, 153 (3742), pp. 1351-1358
  • McGaugh, J.L., Memory - A century of consolidation (2000) Science, 287 (5451), pp. 248-251
  • Milekic, M.H., Alberini, C.M., Temporally graded requirement for protein synthesis following memory reactivation (2002) Neuron, 36 (3), pp. 521-525
  • Misanin, J.R., Miller, R.R., Lewis, D.J., Retrograde amnesia produced by electroconvulsive shock after reactivation of a consolidated memory trace (1968) Science, 160 (3827), pp. 554-555
  • Myers, K.M., Davis, M., Behavioral and neural analysis of extinction (2002) Neuron, 36 (4), pp. 567-584
  • Nader, K., Schafe, G.E., Le Doux, J.E., Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval (2000) Nature, 406 (6797), pp. 722-726
  • Nader, K., Wang, S.H., Fading in (2006) Learning and Memory, 13 (5), pp. 530-535
  • Neugroschl, J., Wang, S., Alzheimer's disease: Diagnosis and treatment across the spectrum of disease severity (2011) Mt Sinai Journal of Medicine, 78 (4), pp. 596-612
  • Ohno, M., Watanabe, S., Interactive processing between glutamatergic and cholinergic systems involved in inhibitory avoidance learning of rats (1996) European Journal of Pharmacology, 312 (2), pp. 145-147
  • Ortega, A., del Guante, M.A., Prado-Alcalá, R.A., Alemán, V., Changes in rat brain muscarinic receptors after inhibitory avoidance learning (1996) Life Sciences, 58 (9), pp. 799-809
  • Parvez, K., Stewart, O., Sangha, S., Lukowiak, K., Boosting intermediate-term into long-term memory (2005) Journal of Experimental Biology, 208 (PART 8), pp. 1525-1536
  • Perry, E.K., Morris, C.M., Court, J.A., Cheng, A., Fairbairn, A.F., McKeith, I.G., Alteration in nicotine binding sites in Parkinson's disease, Lewy body dementia and Alzheimer's disease: Possible index of early neuropathology (1995) Neuroscience, 64 (2), pp. 385-395
  • Philips, G.T., Tzvetkova, E.I., Marinesco, S., Carew, T.J., Latent memory for sensitization in Aplysia (2006) Learning and Memory, 13 (2), pp. 224-229
  • Przybyslawski, J., Sara, S.J., Reconsolidation of memory after its reactivation (1997) Behavioural Brain Research, 84 (1-2), pp. 241-246
  • Querfurth, H.W., LaFerla, F.M., Alzheimer's Disease (2010) The New England Journal of Medicine, 362 (4), pp. 329-344
  • Quirarte, G.L., Cruz-Morales, S.E., Cepeda, A., Garcia-Montanez, M., Roldán-Roldán, G., Prado-Alcalá, R.A., Effects of central muscarinic blockade on passive avoidance: Anterograde amnesia, state dependency, or both? (1994) Behavioral and Neural Biology, 62 (1), pp. 15-20
  • Quirion, R., Cholinergic markers in Alzheimer disease and autoregulation of acetycholine release (1993) Journal of Psychiatry and Neuroscience, 18 (5), pp. 226-234
  • Rescorla, R.A., Behavioral studies of Pavlovian conditioning (1988) Annual Review of Neuroscience, 11, pp. 329-352
  • Ribot, T., (1881) Les maladies de la memoire, , Appleton-Century-Crofts, New York
  • Richardson, J.S., Miller, P.S., Lemay, J.S., Jyu, C.A., Neil, S.G., Kilduff, C.J., Mental dysfunction and the blockade of muscarinic receptors in the brains of the normal elderly (1985) Progress in Neuro-psychopharmacology and Biological Psychiatry, 9 (5-6), pp. 651-654
  • Roldán, G., Bolaños-Badillo, E., González-Sánchez, H., Quirarte, G.L., Prado-Alcalá, R.A., Selective M1 muscarinic receptor antagonists disrupt memory consolidation of inhibitory avoidance in rats (1997) Neuroscience Letters, 230 (2), pp. 93-96
  • Roozendaal, B., McGaugh, J.L., Memory modulation (2011) Behavioral Neuroscience, 125 (6), pp. 797-824
  • Rush, D.K., Scopolamine amnesia of passive avoidance: A deficit of information acquisition (1988) Behavioral and Neural Biology, 50 (3), pp. 255-274
  • Siegel, S., (1956) Non-parametric statistics for the behavioral sciences, , McGraw-Hill, New York
  • Squire, L.R., Lost forever or temporarily misplaced? The long debate about the nature of memory impairment (2006) Learning and Memory, 13 (5), pp. 522-529
  • Squire, L.R., Wixted, J.T., The cognitive neuroscience of human memory since H.M (2011) Annual Review of Neuroscience, 34, pp. 259-288
  • Terazima, E., Yoshino, M., Modulatory action of acetylcholine on the Na+-dependent action potentials in Kenyon cells isolated from the mushroom body of the cricket brain (2010) Journal of Insect Physiology, 56 (12), pp. 1746-1754
  • Tronson, N.C., Taylor, J.R., Molecular mechanisms of memory reconsolidation (2007) Nature Reviews Neuroscience, 8 (4), pp. 262-275
  • Weinberger, N.M., Food for thought: Honeybee foraging, memory, and acetylcholine (2006) Scienc's STKE, 2006 (336), pp. pe23

Citas:

---------- APA ----------
Blake, M.G., Boccia, M.M., Krawczyk, M.C., Delorenzi, A. & Baratti, C.M. (2012) . Choline reverses scopolamine-induced memory impairment by improving memory reconsolidation. Neurobiology of Learning and Memory, 98(2), 112-121.
http://dx.doi.org/10.1016/j.nlm.2012.07.001
---------- CHICAGO ----------
Blake, M.G., Boccia, M.M., Krawczyk, M.C., Delorenzi, A., Baratti, C.M. "Choline reverses scopolamine-induced memory impairment by improving memory reconsolidation" . Neurobiology of Learning and Memory 98, no. 2 (2012) : 112-121.
http://dx.doi.org/10.1016/j.nlm.2012.07.001
---------- MLA ----------
Blake, M.G., Boccia, M.M., Krawczyk, M.C., Delorenzi, A., Baratti, C.M. "Choline reverses scopolamine-induced memory impairment by improving memory reconsolidation" . Neurobiology of Learning and Memory, vol. 98, no. 2, 2012, pp. 112-121.
http://dx.doi.org/10.1016/j.nlm.2012.07.001
---------- VANCOUVER ----------
Blake, M.G., Boccia, M.M., Krawczyk, M.C., Delorenzi, A., Baratti, C.M. Choline reverses scopolamine-induced memory impairment by improving memory reconsolidation. Neurobiol. Learn. Mem. 2012;98(2):112-121.
http://dx.doi.org/10.1016/j.nlm.2012.07.001