Artículo

Este artículo es de Acceso Abierto y puede ser descargado en su versión final desde nuestro repositorio
Consulte la política de Acceso Abierto del editor

Abstract:

We consider the generalization of two classical periodic problems to the context of time scales. On the one hand, we generalize a celebrated result by Castro for the forced pendulum equation. On the other hand, we extend a well-known result by Nirenberg to a resonant system of equations on time scales. Furthermore, the results are new even for classical difference equations. © 2007 Texas State University.

Registro:

Documento: Artículo
Título:Two classical periodic problems on time scales
Autor:Amster, P.; Tisdell, C.C.
Filiación:Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Pabellón I, (1428) Buenos Aires, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
School of Mathematics, University of New South Wales, Sydney, NSW 2052, Australia
Palabras clave:Boundary value problem; Existence of solutions; Forced pendulum equation; Landesman-lazer conditions; Time scale
Año:2007
Volumen:2007
Página de inicio:1
Página de fin:12
Título revista:Electronic Journal of Differential Equations
Título revista abreviado:Electron. J. Differ. Equ.
ISSN:10726691
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_10726691_v2007_n_p1_Amster.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10726691_v2007_n_p1_Amster

Referencias:

  • Amster, P., Rogers, C., Tisdell, C.C., Existence of solutions to boundary value problems for dynamic systems on time scales (2005) J. Math. Anal. Appl, 308 (2), pp. 565-577
  • Amster, P., De Npoli, P., Tisdell, C.C., (2007) International Journal of Difference Equations, 2 (1)
  • Bohner, M., Peterson, A., (2001) Dynamic equations on time scales. An introduction with applications, , Birkhäuser Boston, Inc, Boston, MA
  • Bohner, M., Guseinov, G., Peterson, A., Introduction to the time scales calculus (2003) Advances in dynamic equations on time scales, pp. 1-15. , Birkhäuser Boston, Boston, MA
  • Castro, A., Periodic solutions of the forced pendulum equation (1979) Differential equations (Proc. Eighth Fall Conf., Oklahoma State Univ., Stillwater, Okla, pp. 149-160. , Academic Press, New York-London-Toronto, Ont
  • Fournier, G., Mawhin, J., On periodic solutions of forced pendulum-like equations (1985) J. Differential Equations, 60 (3), pp. 381-395
  • Guseinov, G.S., Integration on time scales (2003) J. Math. Anal. Appl, 285 (1), pp. 107-127
  • Hartman, P., On boundary value problems for systems of ordinary nonlinear second order dierential equations (1960) Trans. Amer. Math. Soc, 96, pp. 493-509
  • Hilger, S., Analysis on measure chains - a unified approach to continuous and discrete calculus (1990) Results Math, 18 (1-2), pp. 18-56
  • Landesman, E.M., Lazer, A.C., Nonlinear perturbations of linear elliptic boundary value problems at resonance (1969) J. Math. Mech, 19, pp. 609-623
  • Mawhin, J., Topological degree methods in nonlinear boundary value problems (1977) CBMS Regional Conference Series in Mathematics, 40. , Expository lectures from the CBMS Regional Conference held at Harvey Mudd College, Claremont, Calif, June 9-15, American Mathematical Society, Providence, R.I
  • Mawhin, J., Landesman-Lazer conditions for boundary value problems: A nonlinear version of resonance (2000) Bol. de la Sociedad Española de Mat. Aplicada, 16, pp. 45-65
  • Mawhin, J., Willem, M., Multiple solutions of the periodic boundary value problem for some forced pendulum-type equations (1984) Journal of Differential Equations, 52 (2), pp. 264-287. , April
  • Nirenberg, L., Generalized degree and nonlinear problems (1971) Contributions to nonlinear functional analysis (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis, pp. 1-9. , Academic Press, New York
  • Ortega, R., Tarallo, M., Degenerate equations of pendulum-type (2000) Commun. Contemp. Math, 2 (2), pp. 127-149
  • Spedding, Vanessa. Taming Nature's Numbers, New Scientist, July 19, 2003, 28-31; Stehlík, P., Periodic boundary value problems on time scales (2005) Adv. Difference Equ, (1), pp. 81-92

Citas:

---------- APA ----------
Amster, P. & Tisdell, C.C. (2007) . Two classical periodic problems on time scales. Electronic Journal of Differential Equations, 2007, 1-12.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10726691_v2007_n_p1_Amster [ ]
---------- CHICAGO ----------
Amster, P., Tisdell, C.C. "Two classical periodic problems on time scales" . Electronic Journal of Differential Equations 2007 (2007) : 1-12.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10726691_v2007_n_p1_Amster [ ]
---------- MLA ----------
Amster, P., Tisdell, C.C. "Two classical periodic problems on time scales" . Electronic Journal of Differential Equations, vol. 2007, 2007, pp. 1-12.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10726691_v2007_n_p1_Amster [ ]
---------- VANCOUVER ----------
Amster, P., Tisdell, C.C. Two classical periodic problems on time scales. Electron. J. Differ. Equ. 2007;2007:1-12.
Available from: https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10726691_v2007_n_p1_Amster [ ]