Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Low-frequency (100 Hz), intermediate-current (50 to 200 mA) glow discharges were experimentally investigated in atmospheric pressure air between blunt copper electrodes. Voltage-current characteristics and images of the discharge for different inter-electrode distances are reported. A cathode-fall voltage close to 360 V and a current density at the cathode surface of about 11 A/cm2, both independent of the discharge current, were found. The visible emissive structure of the discharge resembles to that of a typical low-pressure glow, thus suggesting a glow-like electric field distribution in the discharge. A kinetic model for the discharge ionization processes is also presented with the aim of identifying the main physical processes ruling the discharge behavior. The numerical results indicate the presence of a non-equilibrium plasma with rather high gas temperature (above 4000 K) leading to the production of components such as NO, O, and N which are usually absent in low-current glows. Hence, the ionization by electron-impact is replaced by associative ionization, which is independent of the reduced electric field. This leads to a negative current-voltage characteristic curve, in spite of the glow-like features of the discharge. On the other hand, several estimations show that the discharge seems to be stabilized by heat conduction; being thermally stable due to its reduced size. All the quoted results indicate that although this discharge regime might be considered to be close to an arc, it is still a glow discharge as demonstrated by its overall properties, supported also by the presence of thermal non-equilibrium. © 2015 AIP Publishing LLC.

Registro:

Documento: Artículo
Título:On the physical processes ruling an atmospheric pressure air glow discharge operating in an intermediate current regime
Autor:Prevosto, L.; Kelly, H.; Mancinelli, B.; Chamorro, J.C.; Cejas, E.
Filiación:Grupo de Descargas Eléctricas, Departamento Ing. Electromecánica, Facultad Regional Venado Tuerto (UTN), Laprida 651, Venado Tuerto, Santa Fe, 2600, Argentina
Instituto de Física Del Plasma (CONICET), Facultad de Ciencias Exactas y Naturales (UBA), Ciudad Universitaria Pab. i, Buenos Aires, 1428, Argentina
Palabras clave:Atmospheric pressure; Cathodes; Current voltage characteristics; Electric fields; Electrodes; Glow discharges; Heat conduction; Impact ionization; Ionization; Ionization of gases; Low temperature production; Associative ionization; Atmospheric pressure air; Atmospheric pressure air glow discharges; Cathode fall voltage; Electric field distributions; Nonequilibrium plasmas; Thermal non-equilibrium; Voltage-current characteristics; Electric discharges
Año:2015
Volumen:22
Número:2
DOI: http://dx.doi.org/10.1063/1.4907661
Título revista:Physics of Plasmas
Título revista abreviado:Phys. Plasmas
ISSN:1070664X
CODEN:PHPAE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_1070664X_v22_n2_p_Prevosto

Referencias:

  • Raizer, P., (1991) Gas Discharge Physics, , (Springer, Berlin, Germany)
  • Boulos, M., Fauchais, P., Pfender, E., (1994) Thermal Plasmas, Fundamentals and Applications, 1. , (Plenum, New York)
  • Nemchinsky, V.A., Severance, W.S., (2006) J. Phys. D: Appl. Phys., 39, p. R423
  • Fauchais, P., (2004) J. Phys. D: Appl. Phys., 37, p. R86
  • Fridman, A., Chirokov, A., Gutsol, A., (2005) J. Phys. D: Appl. Phys., 38, p. R1
  • Faure, G., Shkol'Nik, S.M., (1998) J. Phys. D: Appl. Phys., 31, p. 1212
  • Verreycken, T., Schram, D.C., Leys, C., Bruggeman, P., (2010) Plasma Sources Sci. Technol., 19
  • Graves, D.B., (2014) Phys. Plasmas, 21
  • Park, G.Y., Park, S.J., Choi, M.Y., Koo, I.G., Byun, J.H., Hong, J.W., Sim, J.Y., Lee, J.K., (2012) Plasma Sources Sci. Technol., 21
  • Machala, Z., Janda, M., Hensel, K., Jedlovsky, I., Lestinska, L., Foltin, V., Martisovits, V., Morvova, M., (2007) J. Mol. Spectrosc., 243, p. 194
  • Akishev, Yu., Goossens, O., Callebaut, T., Leys, C., Napartovich, A., Trushkin, N., (2001) J. Phys. D: Appl. Phys., 34, p. 2875
  • Machala, Z., Marode, E., Laux, C.O., Kruger, C.H., (2004) J. Adv. Oxid. Technol., 7, p. 133
  • Yu, L., Laux, C.O., Packan, D.M., Kruger, C.H., (2002) J. Appl. Phys., 91, p. 2678
  • Lu, X., Leipold, F., Laroussi, M., (2003) J. Phys. D: Appl. Phys., 36, p. 2662
  • Staack, D., Farouk, B., Gutsol, A., Fridman, A., (2005) Plasma Sources Sci. Technol., 14, p. 700
  • Arkhipenko, V.I., Kirillov, A.A., Simonchik, L.V., Zgirouski, S.M., (2005) Plasma Sources Sci. Technol., 14, p. 757
  • Staack, D., Farouk, B., Gutsol, A., Fridman, A., (2008) Plasma Sources Sci. Technol., 17
  • Wilson, A., Staack, D., Farouk, T., Gutsol, A., Fridman, A., Farouk, B., (2008) Plasma Sources Sci. Technol., 17
  • Watanabe, S., Saito, S., Takahashi, K., Onzawa, T., (2003) Weld. Int., 17, p. 593
  • Li, X., Tao, X., Yin, Y., (2009) IEEE Trans. Plasma Sci., 37, p. 759
  • Giuliani, L., Xaubert, M., Grondona, D., Minotti, F., Kelly, H., (2013) Phys. Plasmas, 20
  • Gambling, W.A., Edels, H., (1954) Br. J. Appl. Phys., 5, p. 36
  • Naidis, G.V., (2007) Plasma Sources Sci. Technol., 16, p. 297
  • Benilov, M.S., Naidis, G.V., (2003) J. Phys. D: Appl. Phys., 36, p. 1834
  • Kossyi, I.A., Yu Kostinsky, A., Matveyev, A.A., Silakov, V.P., (1992) Plasma Sources Sci. Technol., 1, p. 207
  • Aleksandrov, N.L., Bazelyan, E.M., Kochetov, I.V., Dyatko, N.A., (1997) J. Phys. D: Appl. Phys., 30, p. 1616
  • CPAT & Kinema Software, , http://www.siglo-kinema.com/bolsig.htm
  • Phelps, A.V., Pitchford, L.C., (1985) Phys. Rev. A, 31, p. 2932
  • Gleizes, A., Gonzalez, J.J., Freton, P., (2005) J. Phys. D: Appl. Phys., 38, p. R153
  • Nemchinsky, V., (2005) J. Phys. D: Appl. Phys., 38, p. 3825

Citas:

---------- APA ----------
Prevosto, L., Kelly, H., Mancinelli, B., Chamorro, J.C. & Cejas, E. (2015) . On the physical processes ruling an atmospheric pressure air glow discharge operating in an intermediate current regime. Physics of Plasmas, 22(2).
http://dx.doi.org/10.1063/1.4907661
---------- CHICAGO ----------
Prevosto, L., Kelly, H., Mancinelli, B., Chamorro, J.C., Cejas, E. "On the physical processes ruling an atmospheric pressure air glow discharge operating in an intermediate current regime" . Physics of Plasmas 22, no. 2 (2015).
http://dx.doi.org/10.1063/1.4907661
---------- MLA ----------
Prevosto, L., Kelly, H., Mancinelli, B., Chamorro, J.C., Cejas, E. "On the physical processes ruling an atmospheric pressure air glow discharge operating in an intermediate current regime" . Physics of Plasmas, vol. 22, no. 2, 2015.
http://dx.doi.org/10.1063/1.4907661
---------- VANCOUVER ----------
Prevosto, L., Kelly, H., Mancinelli, B., Chamorro, J.C., Cejas, E. On the physical processes ruling an atmospheric pressure air glow discharge operating in an intermediate current regime. Phys. Plasmas. 2015;22(2).
http://dx.doi.org/10.1063/1.4907661