Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In this work, we present an experimental and theoretical study of a low frequency, atmospheric plasma-jet discharge in argon. The discharge has the characteristics of a contracted glow with a current channel of submillimeter diameter and a relatively high voltage cathode layer. In order to interpret the measurements, we consider the separate modeling of each region of the discharge: main channel and cathode layer, which must then be properly matched together. The main current channel was modeled, extending a previous work, as similar to an arc in which joule heating is balanced by lateral heat conduction, without thermal equilibrium between electrons and heavy species. The cathode layer model, on the other hand, includes the emission of secondary electrons by ion impact and by additional mechanisms, of which we considered emission due to collision of atoms excited at metastable levels, and field-enhanced thermionic emission (Schottky effect). The comparison of model and experiment indicates that the discharge can be effectively sustained in its contracted form by the secondary electrons emitted by collision of excited argon atoms, whereas thermionic emission is by far insufficient to provide the necessary electrons. © 2015 AIP Publishing LLC.

Registro:

Documento: Artículo
Título:Study of a contracted glow in low-frequency plasma-jet discharges operating with argon
Autor:Minotti, F.; Giuliani, L.; Xaubet, M.; Grondona, D.
Filiación:Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Buenos Aires, C1428EHA, Argentina
Instituto de Física Del Plasma (INFIP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Buenos Aires, C1428EHA, Argentina
Palabras clave:Cathodes; Collisional plasmas; Electric discharges; Electrodes; Electrons; Field emission displays; Fighter aircraft; Heat conduction; Ion bombardment; Plasma jets; Secondary emission; Thermionic emission; Atmospheric plasmas; Comparison of models; High voltage cathode; Low-frequency plasmas; Metastable levels; Secondary electrons; Submillimeter diameter; Thermal equilibriums; Electron emission
Año:2015
Volumen:22
Número:11
DOI: http://dx.doi.org/10.1063/1.4936277
Título revista:Physics of Plasmas
Título revista abreviado:Phys. Plasmas
ISSN:1070664X
CODEN:PHPAE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_1070664X_v22_n11_p_Minotti

Referencias:

  • Graves, D.B., (2014) Phys. Plasmas, 21, p. 080901
  • Kong, M.G., Morfill, G., Stolz, W., (2012) Plasma Medicine, , edited by M. Laroussi Cambridge University Press, Cambridge
  • Giuliani, L., Xaubet, M., Grondona, D., Minotti, F., Kelly, H., (2013) Phys. Plasmas, 20, p. 063505
  • Boeuf, J.P., Pitchford, L.C., (1995) Phys. Rev. E, 51, p. 1376
  • Murphy, E.L., Good, R.H., (1956) Phys. Rev., 102, p. 1464
  • Raizer, Y.P., (1991) Gas Discharge Physics, pp. 68-71. , edited by J. E. Allen Springer Verlag, Berlin 277, and 327
  • Akishev, Y., Karalnik, V., Kochetov, I., Napartovich, A., Trushkin, N., (2014) Plasma Sources Sci. Technol., 23, p. 054013
  • Boulos, M.I., Fauchais, P., Pfender, E., (1994) Thermal Plasmas: Fundamentals and Applications, 1, pp. 314-317. , Plenum Press, New York
  • Phelps, A.V., (2001) Plasma Sources Sci. Technol., 10, p. 329
  • Lukáč, P., Mikuš, O., Morva, I., Zábudlá, Z., Trnovec, J., Morvová, M., (2011) Plasma Sources Sci. Technol., 20, p. 055012
  • Nikolić, M., Newton, J., Sukenik, C.I., Vušković, L., Popović, S., (2015) J. Appl. Phys., 117, p. 023304
  • Dunning, F.B., Smith, A.C.H., Stebbings, R.F., (1971) J. Phys. B: At. Mol. Phys., 4, p. 1683
  • Nist, http://www.nist.gov/pml/data/asd.cfm, atomic database; Pearse, R., Gaydon, A., (1941) The Identification of Molecular Spectra, pp. 137-160. , John Wiley & Sons, New York
  • Itikawaa, Y., Mason, N., (2005) J. Phys. Chem. Ref. Data, 34, p. 1
  • Hagelaar, G.J.M., Pitchford, L.C., (2005) Plasma Sources Sci. Technol., 14, p. 722
  • Snyder, H.L., Smith, B.T., Parr, T.P., Martin, R.M., (1982) Chem. Phys., 65, p. 397
  • Sekiya, H., Nishimura, Y., (1990) Chem. Phys. Lett., 171, p. 291

Citas:

---------- APA ----------
Minotti, F., Giuliani, L., Xaubet, M. & Grondona, D. (2015) . Study of a contracted glow in low-frequency plasma-jet discharges operating with argon. Physics of Plasmas, 22(11).
http://dx.doi.org/10.1063/1.4936277
---------- CHICAGO ----------
Minotti, F., Giuliani, L., Xaubet, M., Grondona, D. "Study of a contracted glow in low-frequency plasma-jet discharges operating with argon" . Physics of Plasmas 22, no. 11 (2015).
http://dx.doi.org/10.1063/1.4936277
---------- MLA ----------
Minotti, F., Giuliani, L., Xaubet, M., Grondona, D. "Study of a contracted glow in low-frequency plasma-jet discharges operating with argon" . Physics of Plasmas, vol. 22, no. 11, 2015.
http://dx.doi.org/10.1063/1.4936277
---------- VANCOUVER ----------
Minotti, F., Giuliani, L., Xaubet, M., Grondona, D. Study of a contracted glow in low-frequency plasma-jet discharges operating with argon. Phys. Plasmas. 2015;22(11).
http://dx.doi.org/10.1063/1.4936277