Artículo

La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Direct numerical simulations of the incompressible MHD equations with a uniform background magnetic field in a turbulent regime are performed to assess the relative importance of broadband turbulent fluctuations and wavelike fluctuations that are associated with an Alfv́n wave dispersion relation. The focus is on properties of the fluctuations in the frequency domain. Eulerian frequency spectra and individual wave number mode frequency spectra show the presence of peaks at the corresponding Alfv́n wave frequencies for full nonlinear simulations in a turbulent regime. The peaks are however broad and their power content is compared to the power in the full spectrum as well as a signal to noise ratio is defined and quantified for different values of the background magnetic field. The ratio of power in Alfv́n waves to the power in the rest of the spectrum is also quantified and is found to be small for different values of the mean magnetic field. Individual modes in time show a much more complex behavior than that could be expected for linear solutions. Also, nonlinear transfer of energy is evidenced by the existence of peaks at wave numbers perpendicular to the mean magnetic field. Implications are discussed for theories of strong turbulence as well as perturbation theories that assume the leading order behavior is that of propagating Alfv́n waves. © 2009 American Institute of Physics.

Registro:

Documento: Artículo
Título:Waves and turbulence in magnetohydrodynamic direct numerical simulations
Autor:Dmitruk, P.; Matthaeus, W.H.
Filiación:Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
Department of Physics and Astronomy, Bartol Research Institute, University of Delaware, Newark, DE 19716, United States
Palabras clave:Complex behavior; Eulerian; Frequency domains; Frequency spectra; Full spectrum; Leading orders; Linear solution; Mean magnetic field; MHD equations; N-waves; Nonlinear simulations; Nonlinear transfer; Perturbation theory; Relative importance; Strong turbulence; Turbulent fluctuation; Turbulent regime; Wave number modes; Wave numbers; Direct numerical simulation; Magnetic fields; Perturbation techniques; Signal to noise ratio; Spectroscopy; Turbulence; Wave equations; Power spectrum
Año:2009
Volumen:16
Número:6
DOI: http://dx.doi.org/10.1063/1.3148335
Título revista:Physics of Plasmas
Título revista abreviado:Phys. Plasmas
ISSN:1070664X
CODEN:PHPAE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_1070664X_v16_n6_p_Dmitruk

Referencias:

  • For compressible MHD more types of waves appear, the fast and slow magnetoacoustic waves, including velocity fluctuations parallel to wave vectors, i.e., vk k0; Matthaeus, W.H., Goldstein, M.L., (1982) J. Geophys. Res., 87, p. 6011. , 0148-0227 10.1029/JA087iA08p06011, DOI: 10.1029/JA087iA08p06011
  • Monin, A.S., Yaglom, A.M., (1971) Statistical Fluid Mechanics, 1, p. 769. , MIT, Cambridge, Vol
  • Belcher, J.W., Davis Jr., L., (1971) J. Geophys. Res., 76, p. 3534. , 0148-0227 10.1029/JA076i016p03534, DOI: 10.1029/JA076i016p03534
  • Bavassano, B., Dobrowolny, M., Fanfoni, G., Mariani, F., Ness, N.F., (1982) Sol. Phys., 78, p. 373. , 0038-0938,. 10.1007/BF00151617
  • Roberts, D.A., Goldstein, M.L., Klein, L.W., Matthaeus, W.H., (1987) J. Geophys. Res., 92, p. 12023. , DOI: 10.1029/JA092iA11p12023
  • Dobrowolny, M., Mangeney, A., Veltri, P., (1980) Phys. Rev. Lett., 45, p. 144. , 0031-9007,. 10.1103/PhysRevLett.45.144
  • The condition for interaction of two Alfv́nic wave packets, corresponding to "opposite sense of correlation" of v and b, is sometimes described as "opposite directions of propagation." This is actually misleading and not fully correct For example, the same condition applies in a two dimensional geometry perpendicular to a uniform mean magnetic field, even though there is, for this case, no propagation along the mean field. Furthermore, the condition for interaction of the packets also applies when there is no mean magnetic field and, therefore, no propagation; Kraichnan, R., (1965) Phys. Fluids, 8, p. 1385. , 10.1063/1.1761412
  • Schwartz, S.J., (1977) Mon. Not. R. Astron. Soc., 178, p. 399. , 0035-8711
  • Galtier, S., Nazarenko, S.V., Newell, A.C., Pouquet, A., (2000) J. Plasma Phys., 63, p. 447. , 0022-3778,. 10.1017/S0022377899008284
  • Zhou, Y., Matthaeus, W.H., Dmitruk, P., (2004) Rev. Mod. Phys., 76, p. 1015. , 0034-6861,. 10.1103/RevModPhys.76.1015
  • Tsytovich, V.N., (1972) An Introduction to the Theory of Plasma Turbulence 1st Ed., p. 1. , Pergamon, New York
  • Dmitruk, P., Matthaeus, W.H., (2007) Phys. Rev. e, 76, p. 036305. , 1063-651X,. 10.1103/PhysRevE.76.036305
  • Dmitruk, P., Matthaeus, W.H., Lanzerotti, L., (2004) Geophys. Res. Lett., 31, p. 21805. , 0094-8276 10.1029/2004GL021119, DOI: 10.1029/2004GL021119
  • Tennekes, H., (1975) J. Fluid Mech., 67, p. 561. , 0022-1120,. 10.1017/S0022112075000468
  • Chen, S.Y., Kraichnan, R.H., (1989) Phys. Fluids A, 1, p. 2019. , 10.1063/1.857475
  • Bulsara, A.R., Gammaitoni, L., (1996) Phys. Today, 49, p. 39. , 0031-9228
  • Shebalin, J., Matthaeus, W.H., Montgomery, D.C., (1983) J. Plasma Phys., 29, p. 525. , 0022-3778,. 10.1017/S0022377800000933
  • Oughton, S., Priest, E.R., Matthaeus, W.H., (1994) J. Fluid Mech., 280, p. 95. , 0022-1120,. 10.1017/S0022112094002867
  • Robinson, D.C., Rusbridge, M.G., (1971) Phys. Fluids, 14, p. 2499. , 10.1063/1.1693359
  • Bieber, J.W., Wanner, W., Matthaeus, W.H., (1996) J. Geophys. Res., 101, p. 2511. , 0148-0227 10.1029/95JA02588, DOI: 10.1029/95JA02588
  • Alexakis, A., Bigot, B., Politano, H., Galtier, S., (2007) Phys. Rev. e, 76, p. 056313. , 1063-651X,. 10.1103/PhysRevE.76.056313
  • Del Zanna, L., Velli, M., (2002) Adv. Space Res., 30, p. 471. , 0273-1177,. 10.1016/S0273-1177(02)00320-4
  • Chandran, B.D.G., (2005) Phys. Rev. Lett., 95, p. 265004. , 0031-9007,. 10.1103/PhysRevLett.95.265004
  • Miller, J.A., Cargill, P.J., Emslie, A.G., Holman, D.G., Dennis, B.R., Larosa, T.N., Winglee, R.M., Tsuneta, S., (1997) J. Geophys. Res., 102, p. 14631. , 0148-0227 10.1029/97JA00976, DOI: 10.1029/97JA00976

Citas:

---------- APA ----------
Dmitruk, P. & Matthaeus, W.H. (2009) . Waves and turbulence in magnetohydrodynamic direct numerical simulations. Physics of Plasmas, 16(6).
http://dx.doi.org/10.1063/1.3148335
---------- CHICAGO ----------
Dmitruk, P., Matthaeus, W.H. "Waves and turbulence in magnetohydrodynamic direct numerical simulations" . Physics of Plasmas 16, no. 6 (2009).
http://dx.doi.org/10.1063/1.3148335
---------- MLA ----------
Dmitruk, P., Matthaeus, W.H. "Waves and turbulence in magnetohydrodynamic direct numerical simulations" . Physics of Plasmas, vol. 16, no. 6, 2009.
http://dx.doi.org/10.1063/1.3148335
---------- VANCOUVER ----------
Dmitruk, P., Matthaeus, W.H. Waves and turbulence in magnetohydrodynamic direct numerical simulations. Phys. Plasmas. 2009;16(6).
http://dx.doi.org/10.1063/1.3148335