Artículo

Estamos trabajando para conseguir la versión final de este artículo
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We quantify the strength of the waves and their impact on the energy cascade in rotating turbulence by studying the wave number and frequency energy spectrum, and the time correlation functions of individual Fourier modes in numerical simulations in three dimensions in periodic boxes. From the spectrum, we find that a significant fraction of the energy is concentrated in modes with wave frequency ω ≈ 0, even when the external forcing injects no energy directly into these modes. However, for modes for which the period of the inertial waves τω is faster than the turnover time τNL, a significant fraction of the remaining energy is concentrated in the modes that satisfy the dispersion relation of the waves. No evidence of accumulation of energy in the modes with τω = τNL is observed, unlike what critical balance arguments predict. From the time correlation functions, we find that for modes with τω < τsw (with tsw the sweeping time) the dominant decorrelation time is the wave period, and that these modes also show a slower modulation on the timescale tNL as assumed in wave turbulence theories. The rest of the modes are decorrelated with the sweeping time, including the very energetic modes with ω ≈ 0. © 2014 AIP Publishing LLC.

Registro:

Documento: Artículo
Título:Quantification of the strength of inertial waves in a rotating turbulent flow
Autor:Clark di Leoni, P.; Cobelli, P.J.; Mininni, P.D.; Dmitruk, P.; Matthaeus, W.H.
Filiación:Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
IFIBA, CONICET, Ciudad Universitaria, 1428 Buenos Aires, Argentina
Bartol Research Institute, Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, United States
Palabras clave:Dispersions; Turbulence; Dispersion relations; External forcing; Frequency energy; Remaining energies; Rotating turbulence; Three dimensions; Time correlation functions; Wave frequencies; Fourier series
Año:2014
Volumen:26
Número:3
DOI: http://dx.doi.org/10.1063/1.4868280
Título revista:Physics of Fluids
Título revista abreviado:Phys. Fluids
ISSN:10706631
CODEN:PHFLE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10706631_v26_n3_p_ClarkdiLeoni

Referencias:

  • Cambon, C., Rubinstein, R., Godeferd, F.S., Advances in wave turbulence: rapidly rotating flows (2004) New J. Phys., 6, p. 73
  • Cambon, C., Jacquin, L., Spectral approach to non-isotropic turbulence subjected to rotation (1989) J. Fluid Mech., 202, p. 295
  • Cambon, C., Mansour, N.N., Godeferd, F.S., Energy transfer in rotating turbulence (1997) J. Fluid Mech., 337, p. 303
  • Bellet, F., Godeferd, F.S., Scott, F.S., Wave turbulence in rapidly rotating flows (2006) J. Fluid Mech., 562, p. 83
  • Waleffe, F., Inertial transfers in the helical decomposition (1993) Phys. Fluids A, 5, p. 677
  • Galtier, S., Weak inertial-wave turbulence theory (2003) Phys. Rev. E, 68, p. 015301
  • Chen, Q., Chen, S., Eyink, G.L., Holm, D., Resonant interactions in rotating homogeneous three-dimensional turbulence (2005) J. Fluid Mech., 542, p. 139
  • Müller, W.-C., Thiele, M., Scaling and energy transfer in rotating turbulence (2007) Europhys. Lett., 77, p. 34003
  • Mininni, P.D., Alexakis, A., Pouquet, A., Scale interactions and scaling laws in rotating flows at moderate Rossby numbers and large Reynolds numbers (2009) Phys. Fluids, 21, p. 015108
  • Mininni, P.D., Rosenberg, D., Pouquet, A., Isotropization at small scales of rotating helically driven turbulence (2012) J. Fluid Mech., 699, p. 263
  • Cobelli, P., Petitjeans, P., Maurel, A., Pagneux, V., Mordant, N., Space-time resolved wave turbulence in a vibrating plate (2009) Phys. Rev. Lett., 103, p. 204301
  • Cobelli, P., Przadka, A., Petitjeans, P., Lagubeau, G., Pagneux, V., Maurel, A., Different regimes for water wave turbulence (2011) Phys. Rev. Lett., 107, p. 214503
  • Dmitruk, P., Matthaeus, W.H., Waves and turbulence in magnetohydrodynamic direct numerical simulations (2009) Phys. Plasmas, 16, p. 062304
  • Cambon, C., Scott, J.F., Linear and nonlinear models of anisotropic turbulence (1999) Ann. Rev. Fluid Mech., 31, pp. 1-53
  • Durbin, P.A., Reif, B.A.P., Statistical Theory and Modeling for Turbulent Flow (2011), (Wiley, Chichester,West Sussex; Favier, B., Godeferd, F.S., Cambon, C., On space and time correlations of isotropic and rotating turbulence (2010) Phys. Fluids, 22, p. 015101
  • Servidio, S., Carbone, V., Dmitruk, P., Matthaeus, W.H., Time decorrelation in isotropic magnetohydrodynamic turbulence (2011) Europhys. Lett., 96, p. 55003
  • Tennekes, H., Eulerian and lagrangian time microscales in isotropic turbulence (1975) J. Fluid Mech., 67, pp. 561-567
  • Chen, S., Kraichnan, R.H., Sweeping decorrelation in isotropic turbulence (1989) Phys. Fluids A, 1, p. 2019
  • Nelkin, M., Tabor, M., Time correlations and random sweeping in isotropic turbulence (1990) Phys. Fluids A, 2, p. 81
  • Sanada, T., Shanmugasundaram, V., Random sweeping effect in isotropic numerical turbulence (1992) Phys. Fluids A, 4, p. 1245
  • Monin, A.S., Yaglom, A.M., Statistical Fluid Mechanics Mechanics of Turbulence (2007), (Dover Publications, New York; Blackman, E.G., Field, G.B., A new approach to turbulent transport of a mean scalar (2003) Phys. Fluids, 15, pp. L73
  • Nazarenko, S.V., Schekochihin, A.A., Critical balance in magnetohydronamic, rotating and stratified turbulence: towards a universal scaling conjecture (2011) J. Fluid Mech., 677, pp. 134-153
  • Hopfinger, E.J., Browand, F.K., Gagne, Y., Turbulence and waves in a rotating tank (1982) J. Fluid Mech., 125, p. 505
  • Godeferd, F.S., Lollini, L., Direct numerical simulations of turbulence with confinement and rotation (1999) J. Fluid Mech., 393, p. 257
  • Manders, A.M.M., Maas, L.R.M., Observations of inertial waves in a rectangular basin with one sloping boundary (2003) J. Fluid Mech., 493, p. 59
  • Aldridge, K.D., Lumb, I., Inertial waves identified in the earth's fluid outer core (1987) Nature (London), 325, p. 421
  • Gómez, D.O., Mininni, P.D., Dmitruk, P., MHD simulations and astrophysical applications (2005) Adv. Sp. Res., 35, p. 899
  • Mininni, P.D., Rosenberg, D., Reddy, R., Pouquet, A., A hybrid mpi-openmp scheme for scalable parallel pseudospectral computations for fluid turbulence (2011) Parallel Comput., 37, p. 316
  • Sen, A., Mininni, P.D., Rosenberg, D., Pouquet, A., Anisotropy and nonuniversality in scaling laws of the large-scale energy spectrum in rotating turbulence (2012) Phys. Rev. E, 86, p. 036319
  • Yarom, E., Vardi, Y., Sharon, E., Experimental quantification of inverse energy cascade in deep rotating turbulence (2013) Phys. Fluids, 25, p. 085105
  • Smith, L.M., Lee, Y., On near resonances and symmetry breaking in forced rotating flows at moderate rossby number (2005) J. Fluid Mech., 535, p. 111
  • Bourgoin, M., Marié, L., Pétrélis, F., Gasquet, C., Guigon, A., Luciani, J.B., Moulin, M., Pinton, J.F., Magnetohydrodynamics measurements in the von Karman sodium experiment (2002) Phys. Fluids, 14, p. 3046
  • Ponty, Y., Mininni, P.D., Montgomery, D.C., Pinton, J.F., Politano, H., Pouquet, A., Numerical study of dynamo action at low magnetic Prandtl numbers (2005) Phys. Rev. Lett, 94, p. 164502
  • Zhou, Y., A phenomenological treatment of rotating turbulence (1995) Phys. Fluids, 7, p. 2092
  • Nazarenko, S., (2011) Wave Turbulence, , (Springer-Verlag Berlin
  • Brethouwer, G., The effect of rotation on rapidly sheared homogeneous turbulence and passive scalar transport. Linear theory and direct numerical simulation (2005) J. Fluid Mech., 542, p. 305
  • Zeman, O., A note on the spectra and decay of rotating homogeneous turbulence (1994) Phys. Fluids, 6, p. 3221

Citas:

---------- APA ----------
Clark di Leoni, P., Cobelli, P.J., Mininni, P.D., Dmitruk, P. & Matthaeus, W.H. (2014) . Quantification of the strength of inertial waves in a rotating turbulent flow. Physics of Fluids, 26(3).
http://dx.doi.org/10.1063/1.4868280
---------- CHICAGO ----------
Clark di Leoni, P., Cobelli, P.J., Mininni, P.D., Dmitruk, P., Matthaeus, W.H. "Quantification of the strength of inertial waves in a rotating turbulent flow" . Physics of Fluids 26, no. 3 (2014).
http://dx.doi.org/10.1063/1.4868280
---------- MLA ----------
Clark di Leoni, P., Cobelli, P.J., Mininni, P.D., Dmitruk, P., Matthaeus, W.H. "Quantification of the strength of inertial waves in a rotating turbulent flow" . Physics of Fluids, vol. 26, no. 3, 2014.
http://dx.doi.org/10.1063/1.4868280
---------- VANCOUVER ----------
Clark di Leoni, P., Cobelli, P.J., Mininni, P.D., Dmitruk, P., Matthaeus, W.H. Quantification of the strength of inertial waves in a rotating turbulent flow. Phys. Fluids. 2014;26(3).
http://dx.doi.org/10.1063/1.4868280