Artículo

El editor permite incluir el artículo en su versión final en nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We examine the decomposition of forced Taylor-Green and Arn'old-Beltrami-Childress (ABC) flows into coherent and incoherent components using an orthonormal wavelet decomposition. We ask whether wavelet coefficient thresholding based on the Donoho-Johnstone criterion can extract a coherent vortex signal while leaving behind Gaussian random noise. We find that no threshold yields a strictly Gaussian incoherent component, and that the most Gaussian incoherent flow is found for data compression lower than that achieved with the fully iterated Donoho-Johnstone threshold. Moreover, even at such low compression, the incoherent component shows clear signs of large-scale spatial correlations that are signatures of the forcings used to drive the flows. © 2012 American Institute of Physics.

Registro:

Documento: Artículo
Título:Wavelet decomposition of forced turbulence: Applicability of the iterative Donoho-Johnstone threshold
Autor:Lord, J.W.; Rast, M.P.; Mckinlay, C.; Clyne, J.; Mininni, P.D.
Filiación:Laboratory for Atmospheric and Space Physics, Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, CO 80309-0391, United States
Computational and Information Systems Laboratory, National Center for Atmospheric Research (NCAR), Boulder, CO 80307-3000, United States
Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
University of California, Los Angeles, CA, United States
Geophysical Turbulence Program, NCAR, Boulder, CO, United States
Palabras clave:Coherent vortices; Forcings; Gaussian random noise; Gaussians; Spatial correlations; Wavelet coefficient thresholding; Gaussian distribution; Wavelet decomposition; Data compression
Año:2012
Volumen:24
Número:2
DOI: http://dx.doi.org/10.1063/1.3683556
Título revista:Physics of Fluids
Título revista abreviado:Phys. Fluids
ISSN:10706631
CODEN:PHFLE
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_10706631_v24_n2_p_Lord.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10706631_v24_n2_p_Lord

Referencias:

  • Farge, M., Schneider, K., Kevlahan, N., Non-gaussianity and coherent vortex simulation for two-dimensional turbulence using an adaptive orthogonal wavelet basis (1999) Phys. Fluids, 11 (8), p. 2187. , 10.1063/1.870080
  • Farge, M., Pellegrino, G., Schneider, K., Coherent vortex extraction in 3D turbulent flows using orthogonal wavelets (2001) Phys. Rev. Lett., 87 (5), p. 054501. , 10.1103/PhysRevLett.87.054501
  • Kadoch, B., Oliveira Domingues, M., Broemstrup, I., Larchevêque, L., Schneider, K., Farge, M., Coherent vorticity extraction in 3D homogeneous isotropic turbulence: Influence of the Reynolds number and geometrical statistics (2009) Braz. J. Phys., 39 (2), p. 531. , 10.1590/S0103-97332009000500004
  • Donoho, D.L., Johnstone, I.M., Ideal spatial adaptation by wavelet shrinkage (1994) Biometrika, 81 (3), p. 425. , 10.1093/biomet/81.3.425
  • Azzalini, A., Farge, M., Schneider, K., Nonlinear wavelet thresholding: A recursive method to determine the optimal denoising threshold (2005) Appl. Comput. Harmon. Anal., 18, p. 177. , 10.1016/j.acha.2004.10.001
  • Mininni, P.D., Alexakis, A., Pouquet, A., Large-scale flow effects, energy transfer, and self-similarity on turbulence (2006) Phys. Rev. E, 74 (1), p. 016303. , 10.1103/PhysRevE.74.016303
  • Orszag, S.A., On the elimination of aliasing in finite-difference schemes by filtering high-wavenumber components (1971) J. Atmos. Sci., 28 (6), p. 1074. , 10.1175/1520-0469(1971)028<1074:OTEOAI>2.0.CO;2
  • Jacobitz, F., Liechtenstein, L., Schneider, K., Farge, M., On the structure and dynamics of sheared and rotating turbulence: Direct numerical simulation and wavelet-based coherent vortex extraction (2008) Phys. Fluids, 20 (4), p. 045103. , 10.1063/1.2896284
  • Okamoto, N., Yoshimatsu, K., Schneider, K., Farge, M., Kaneda, Y., Coherent vortices in high resolution direct numerical simulation of homogeneous isotropic turbulence: A wavelet viewpoint (2007) Phys. Fluids, 19 (11), p. 115109. , 10.1063/1.2771661
  • Okamoto, N., Yoshimatsu, K., Schneider, K., Farge, M., Kaneda, Y., Coherent vorticity simulation of three-dimensional forced homogeneous isotropic turbulence (2011) Multiscale Model. Simul., 9 (3), p. 1144. , 10.1137/10079598X
  • Farge, M., Schneider, K., Pellegrino, G., Wray, A.A., Rogallo, R.S., Coherent vortex extraction in three-dimensional homogeneous turbulence: Comparison between CVS-wavelet and POD-Fourier decompositions (2003) Phys. Fluids, 15 (10), p. 2886. , 10.1063/1.1599857
  • Roussel, O., Schneider, K., Farge, M., Coherent vortex extraction in 3D homogeneous turbulence: Comparison between orthogonal and biorthogonal wavelet decomposition (2005) J. Turbul., 6, p. 11. , 10.1080/14685240500149831
  • Rogers, M.M., Moin, P., Helicity fluctuations in incompressible turbulent flows (1987) Phys. Fluids, 30 (9), p. 2662. , 10.1063/1.866030
  • Kerr, R.M., Histograms of helicity and strain in numerical turbulence (1987) Phys. Rev. Lett., 59 (7), p. 783. , 10.1103/PhysRevLett.59.783
  • Tsinober, A., Kit, E., Dracos, T., Experimental investigation of the field of velocity gradients in turbulent flows (1992) J. Fluid Mech., 242, p. 169. , 10.1017/S0022112092002325
  • Schneider, K., Farge, M., Pellegrino, G., Rogers, M.M., Coherent vortex simulation of three-dimensional turbulent mixing layers using orthogonal wavelets (2005) J. Fluid Mech., 534, p. 39. , 10.1017/S0022112005004234
  • Pearson, K., On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling (1900) Philos. Mag., 50 (302), p. 157. , 10.1080/14786440009463897
  • Anderson, T.W., Darling, D.A., Asymptotic theory of certain 'goodness of fit' criteria based on stochastic processes (1952) Ann. Math. Stat., 23 (2), p. 193. , 10.1214/aoms/1177729437
  • Anderson, T.W., Darling, D.A., A test of goodness of fit (1954) J. Am. Stat. Assoc., 49 (268), p. 765. , 10.2307/2281537

Citas:

---------- APA ----------
Lord, J.W., Rast, M.P., Mckinlay, C., Clyne, J. & Mininni, P.D. (2012) . Wavelet decomposition of forced turbulence: Applicability of the iterative Donoho-Johnstone threshold. Physics of Fluids, 24(2).
http://dx.doi.org/10.1063/1.3683556
---------- CHICAGO ----------
Lord, J.W., Rast, M.P., Mckinlay, C., Clyne, J., Mininni, P.D. "Wavelet decomposition of forced turbulence: Applicability of the iterative Donoho-Johnstone threshold" . Physics of Fluids 24, no. 2 (2012).
http://dx.doi.org/10.1063/1.3683556
---------- MLA ----------
Lord, J.W., Rast, M.P., Mckinlay, C., Clyne, J., Mininni, P.D. "Wavelet decomposition of forced turbulence: Applicability of the iterative Donoho-Johnstone threshold" . Physics of Fluids, vol. 24, no. 2, 2012.
http://dx.doi.org/10.1063/1.3683556
---------- VANCOUVER ----------
Lord, J.W., Rast, M.P., Mckinlay, C., Clyne, J., Mininni, P.D. Wavelet decomposition of forced turbulence: Applicability of the iterative Donoho-Johnstone threshold. Phys. Fluids. 2012;24(2).
http://dx.doi.org/10.1063/1.3683556