Abstract:
We extend to the multilinear setting classical inequalities of Marcinkiewicz and Zygmund on ℓ r -valued extensions of linear operators. We show that for certain 1 ≤ p, q 1 , ⋯ , q m , r≤ ∞, there is a constant C≥ 0 such that for every bounded multilinear operator T:Lq1(μ1)×⋯×Lqm(μm)→Lp(ν) and functions {fk11}k1=1n1⊂Lq1(μ1),⋯,{fkmm}km=1nm⊂Lqm(μm), the following inequality holds ∥(∑k1,⋯,km|T(fk11,⋯,fkmm)|r)1/r∥Lp(ν)≤C‖T‖∏i=1m∥(∑ki=1ni|fkii|r)1/r∥Lqi(μi).In some cases we also calculate the best constant C≥ 0 satisfying the previous inequality. We apply these results to obtain weighted vector-valued inequalities for multilinear Calderón-Zygmund operators. © 2017, Springer Science+Business Media, LLC.
Registro:
Documento: |
Artículo
|
Título: | Multilinear Marcinkiewicz-Zygmund Inequalities |
Autor: | Carando, D.; Mazzitelli, M.; Ombrosi, S. |
Filiación: | Departamento de Matemática - Pab I, Facultad de Cs. Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, 1428, Argentina IMAS-CONICET, Buenos Aires, Argentina Instituto Balseiro, Universidad Nacional de Cuyo - C.N.E.A., Buenos Aires, Argentina Departamento de Matemática, Centro Regional Universitario Bariloche, Universidad Nacional del Comahue, San Carlos de Bariloche, 8400, Argentina Departamento de Matemática, Universidad Nacional del Sur, Bahía Blanca, 8000, Argentina INMABB-CONICET, Bahía Blanca, Argentina
|
Palabras clave: | Calderón-Zygmund operators; Multilinear operators; Vector-valued inequalities |
Año: | 2019
|
Volumen: | 25
|
Número: | 1
|
Página de inicio: | 51
|
Página de fin: | 85
|
DOI: |
http://dx.doi.org/10.1007/s00041-017-9563-5 |
Título revista: | Journal of Fourier Analysis and Applications
|
Título revista abreviado: | J. Fourier Anal. Appl.
|
ISSN: | 10695869
|
Registro: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10695869_v25_n1_p51_Carando |
Referencias:
- Benea, C., Muscalu, C., Multiple vector valued inequalities via the helicoidal method (2016) Anal. PDE, 9, pp. 1931-1988
- Benea, C., Muscalu, C., Quasi-Banach valued inequalities via the helicoidal method, , Preprint
- Bergh, J., Interpolation Spaces (1976) An Introduction. Grund- Lehren Der Mathematischen Wissenschaften, 223. , L o ¨ fstr o ¨ m, J, Springer, Berlin
- Boas, H., Majorant series (2000) J. Korean Math. Soc., 37 (2), pp. 321-337
- Bombal, F., Pérez-García, D., Villanueva, I., Multilinear extensions of Grothendieck’s theorem (2004) Quart. J. Math., 55 (4), pp. 441-450
- Bohnenblust, H.F., Hille, E., On the absolute convergence of Dirichlet series (1931) Ann. Math., 32 (3), pp. 600-622
- Culiuc, A., Di Plinio, F., Ou, Y., Domination of multilinear singular integrals by positive sparse forms
- Cruz-Uribe, D., Martell, J.M., Pérez, C., Extrapolation from A ∞ weights and applications (2004) J. Funct. Anal., 213 (2), pp. 412-439
- Curbera, G., García-Cuerva, J., Martell, J.M., Pérez, C., Extrapolation with weights, rearrangement-invariant function spaces, modular inequalities and applications to singular integrals (2006) Adv. Math., 203, pp. 256-318
- Davie, A.M., Quotient algebras of uniform algebras (1973) J. London Math. Soc., 7 (2), pp. 31-40
- Defant, A., Floret, K., (1993) Tensor Norms and Operator Ideals, 176. , North-Holland Mathematics Studies, North-Holland Publishing Co., Amsterdam
- Defant, A., Junge, M., Best constants and asymptotics of Marcinkiewicz-Zygmund inequalities (1997) Studia Math., 125 (3), pp. 271-287
- Defant, A., Mastyło, M., Interpolation of Fremlin tensor products and Schur factorization of matrices (2012) J. Funct. Anal., 262, pp. 3981-3999
- Defant, A., Sevilla-Peris, P., A new multilinear insight on littlewood’s 4/3-inequality (2009) J. Funct. Anal., 256 (5), pp. 1642-1664
- Di Plinio, F., Ou, Y., Banach-valued multilinear singular integrals, , Preprint, To appear in Indiana Univ. Math. J
- García-Cuerva, J., Rubio de Francia, J.L., (1985) Weighted Norm Inequalities and Related Topics, 116. , North-Holland Mathematics Studies, North-Holland Publishing Co., Amsterdam
- Gasch, J., Maligranda, L., On vector-valued inequalities of Marcinkiewicz-Zygmund, Herz and Krivine type (1994) Math. Nachr., 167, pp. 95-129
- Grafakos, L., Martell, J.M., Extrapolation of weighted norm inequalities for multivariable operators and applications (2004) J. Geom. Anal., 14 (1), pp. 19-46
- Grafakos, L., Torres, R.H., Multilinear Calderón-Zygmund theory (2002) Adv. Math., 165 (1), pp. 124-164
- Grafakos, L., Torres, R.H., Maximal operator and weighted norm inequalities for multilinear singular integrals (2002) Indiana Univ. Math. J., 51 (5), pp. 1261-1276
- Herz, C., Theory of p -spaces with an application to convolution operators (1971) Trans. Am. Math. Soc., 154, pp. 69-82
- Kaijser, S., Some results in the metric theory of tensor products (1978) Studia Math., 63 (2), pp. 157-170
- Lerner, A., Ombrosi, S., Pérez, C., Torres, R., Trujillo-González, R., New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory (2009) Adv. Math., 220 (4), pp. 1222-1264
- Marcinkiewicz, J., Zygmund, A., Quelques inégalités pour les opérations linéaires (1939) Fund. Math., 32, pp. 113-121
- Pérez, C., Torres, R.H., Sharp maximal function estimates for multilinear singular integrals (2003) Contemp. Math., 320, pp. 323-333
- Pietsch, A., (1980) Operator Ideals, , North-Holland Publishing Co., Amsterdam
- Quefflec, H.H., Bohr’s vision of ordinary Dirichlet series; old and new results (1995) J. Anal., 3, pp. 43-60
Citas:
---------- APA ----------
Carando, D., Mazzitelli, M. & Ombrosi, S.
(2019)
. Multilinear Marcinkiewicz-Zygmund Inequalities. Journal of Fourier Analysis and Applications, 25(1), 51-85.
http://dx.doi.org/10.1007/s00041-017-9563-5---------- CHICAGO ----------
Carando, D., Mazzitelli, M., Ombrosi, S.
"Multilinear Marcinkiewicz-Zygmund Inequalities"
. Journal of Fourier Analysis and Applications 25, no. 1
(2019) : 51-85.
http://dx.doi.org/10.1007/s00041-017-9563-5---------- MLA ----------
Carando, D., Mazzitelli, M., Ombrosi, S.
"Multilinear Marcinkiewicz-Zygmund Inequalities"
. Journal of Fourier Analysis and Applications, vol. 25, no. 1, 2019, pp. 51-85.
http://dx.doi.org/10.1007/s00041-017-9563-5---------- VANCOUVER ----------
Carando, D., Mazzitelli, M., Ombrosi, S. Multilinear Marcinkiewicz-Zygmund Inequalities. J. Fourier Anal. Appl. 2019;25(1):51-85.
http://dx.doi.org/10.1007/s00041-017-9563-5