Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte la política de Acceso Abierto del editor

Abstract:

Electrochemical deposition (ECD) in thin cells with different orientations relative to gravity leads to complex stable and unstable physicochemical hydrodynamic flows. Here we study the impact of gravity on these flows through a theoretical macroscopic 3D model and its numerical simulation. The model describes the diffusive, migratory, and convective motion of ions in a fluid subject to an electric field through the Nernst-Planck, Poisson, and Navier-Stokes equations, respectively. The equations are written in terms of dimensionless quantities, in particular, the gravity Grashof number, revealing the importance of gravitoconvection. The nonlinear system of partial differential equations is solved on a uniform grid using finite differences and a strongly implicit iterative scheme. In ECD in a cell in a horizontal position, our model predicts the evolution of two gravity-driven convective rolls and concentration shells attached to each electrode. We predict their birth, growth, expansion towards one another, collision, and merger into a single roll that invades the whole cell. In ECD in a cell in a vertical position, cathode above anode, our model predicts that gravity-induced rolls and concentration shells remain locally attached to fingers that grow downwards; thus, global invasion of the cell by gravity-induced rolls is suppressed, leading to a stable stratified flow. In ECD in a cell in a vertical position, cathode below anode, our model predicts the detachment of rolls and concentration shells from each electrode in the form of plumes that expand towards one another, mix, invade the whole cell, and lead to an unstable stratified flow. For ECD, whether in horizontal or vertical position, in the presence of growth, our model predicts the existence of an electrically driven vortex ring at the dendrite tip that interacts with concentration shells and rolls, leading to complex helicoidal flows. Such structures are experimentally observed, suggesting that ion transport underlying dendrite growth is remarkably well captured by our model. Copyright © 2008, Kent State University.

Registro:

Documento: Artículo
Título:Impact of gravity on thin-layer cell electrochemical deposition
Autor:Mocskos, E.; Marshall, G.
Filiación:Departamento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA, Buenos Aires, Argentina
Palabras clave:Computational modeling; Electrochemical deposition; Finite differences; Stable physicochemical hydrodynamic flows; Unstable physicochemical hydrodynamic flows; 3D models; Computational modeling; Convective motions; Dendrite growth; Driven vortices; Electrochemical deposition; Finite difference; Helicoidal flow; Hydrodynamic flows; Ion transports; Iterative schemes; Numerical simulation; Stratified flows; Thin cells; Thin-layer cells; Uniform grids; Vertical positions; Whole cell; Aerodynamics; Cells; Concentration (process); Dendrites (metallography); Differential equations; Electric fields; Electrochemical sensors; Electrochromic devices; Electrodeposition; Finite difference method; Fluid dynamics; Hydrodynamics; Lead; Nonlinear equations; Nonlinear systems; Reduction; Shells (structures); Thermal stratification; Three dimensional; Navier Stokes equations
Año:2008
Volumen:34
Página de inicio:90
Página de fin:101
Título revista:Electronic Transactions on Numerical Analysis
Título revista abreviado:Electron. Trans. Numer. Anal.
ISSN:10689613
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10689613_v34_n_p90_Mocskos

Referencias:

  • Argoul, F., Huth, J., Merzeau, P., Arnéodo, A., Swinney, H.L., Experimental evidence for homoclinic chaos in an electrochemical growth process (1993) Phys. D, 62, pp. 170-185
  • Bard, A.J., Faulkner, L.R., (1980) Electrochemical Methods: Fundamentals and Applications, , John Wiley & Sons, New York
  • Barkey, D.P., Watt, D., Liu, Z., Raber, S., The role of induced convection in branched electrodeposit morphology selection (1994) J. Electrochem. Soc., 141, pp. 1206-1212
  • Brady, R.M., Ball, R.C., Fractal growth of copper electrodeposits (1984) Nature, 309, pp. 225-229
  • Chazalviel, J.-N., Electrochemical aspects of the generation of ramified metallic electrodeposits (1990) Phys. Rev. A, 42, pp. 7355-7367
  • De Bruyn, J.R., Fingering instability of gravity currents in thin-layer electrochemical deposition (1995) Phys. Rev. Lett., 74, pp. 4843-4846
  • Dengra, S., (2004) Experimental and Theoretical Studies of Ion Transport in Thin-layer Electrodeposition Cells, , Ph.D. thesis, Departamento de Computación, Universidad de Buenos Aires, Buenos Aires
  • Dengra, S., Marshall, G., Molina, F., Front tracking in thin-layer electrodeposition (2000) J. Phys. Soc. Japan, 69, pp. 963-971
  • Fleury, V., Chazalviel, J.-N., 2-D and 3-D convection during electrochemical deposition, experiments and models (1995) Fractal Aspects of Materials, pp. 169-176. , F. Family, P. Meakin, B. Sapoval, and R. Wool, eds., vol. 367 of MRS Symposium Proceedings Series, Material Research Society, Warrendale, Pennsylvania
  • Fleury, V., Chazalviel, J.-N., Rosso, M., Theory and experimental evidence of electroconvention around electrochemical deposits (1992) Phys. Rev. Lett., 68, pp. 2492-2495
  • Coupling of drift, diffusion, and electroconvection, in the vicinity of growing electrodeposits (1993) Phys. Rev. E, 48, pp. 1279-1295
  • Fleury, V., Kaufman, J., Hibbert, B., Mechanism of a morphology transition in ramified electrochemical growth (1994) Nature, 367, pp. 435-438
  • Fleury, V., Rosso, M., Chazalviel, J.-N., Recent progress in electrochemical deposition without supporting electrolyte (1995) Fractal Aspects of Materials, pp. 183-194. , F. Family, P. Meakin, B. Sapoval, and R. Wool, eds., vol. 367 of MRS Symposium Proceedings Series, Material Research Society, Warrendale, Pennsylvania
  • Diffusion migration and convection in electrochemical deposition, vortex pairs, vortex ring arches and domes (1995) Defect Structure, Morphology, and Properties of Deposits, pp. 195-217. , H. D. Merchant, ed. TMS Publications, Warrendale, Pennsylvania
  • Fleury, V., Rosso, M., Chazalviel, J.-N., Sapoval, B., Experimental aspects of dense morphology in copper electrodeposition (1991) Phys. Rev. A, 44, pp. 6693-6705
  • González, G., Marshall, G., Molina, F., Dengra, S., Transition from gravito-to electroconvective regimes in thin-layer electrodeposition (2002) Phys. Rev. E, 65, p. 051607. , 8 pages
  • González, G., Marshall, G., Molina, F.V., Dengra, S., Rosso, M., Viscosity effects in thin-layer electrodeposition (2001) J. Electrochem. Soc., 148, pp. C479-C487
  • Huth, J., Swinney, H., Mccormick, W., Kuhn, A., Argoul, F., Role of convection in thin-layer electrodeposition (1995) Phys. Rev. E, 51, pp. 3444-3458
  • Léger, C., Elezgaray, J., Argoul, F., Experimental demonstration of diffusion-limited dynamics in electrodeposition (1997) Phys. Rev. Lett., 78, pp. 5010-5013
  • Levich, V.G., (1962) Physicochemical Hydrodynamics, , Prentice Hall, Englewood Cliffs, New Jersey
  • Linehan, K.A., De Bruyn, J.R., Gravity currents and the electrolyte concentration field in electrochemical deposition (1995) Canad. J. Phys., 73, pp. 177-186
  • Mallinson, G.D., De Vahl Davis, G., Three-dimensional natural convection in a box: A numerical study (1977) J. Fluid Mech., 83, pp. 1-31
  • Marshall, G., Mocskos, E., Molina, F.V., Dengra, S., Three-dimensional nature of ion transport in thin-layer electrodeposition (2003) Phys. Rev. E, 68, p. 021607. , 8 pages
  • Marshall, G., Mocskos, P., Growth model for ramified electrochemical deposition in the presence of diffusion, migration, and electroconvection (1997) Phys. Rev. E, 55, pp. 549-563
  • Marshall, G., Mocskos, P., Swinney, H.L., Huth, J.M., Buoyancy and electrically driven convection models in thin-layer electrodeposition (1999) Phys. Rev. E, 59, pp. 2157-2167
  • Marshall, G., Molina, F.V., Soba, A., Ion transport in thin cell electrodeposition: Modelling threeion electrolytes in dense branched morphology under constant voltage and current conditions (2005) Electrochimica Acta, 50, pp. 3436-3445
  • Marshall, G., Perone, E., Tarela, P., Mocskos, P., A macroscopic model for growth pattern formation of ramified copper electrodeposits (1995) Chaos Solitons Fractals, 6, pp. 315-324
  • Newman, J., Thomas-Alea, K., (2004) Electrochemical Systems, , 3rd ed. John Wiley & Sons, Hoboken, New Jersey
  • OpenDX: An Open Source Imaging Package, , http://www.opendx.org, Available at
  • Pietronero, K., Weismann, H.J., Stochastic model for dielectric breakdown (1984) J. Statist. Phys., 36, pp. 909-916
  • Probstein, R.F., (1994) Physicochemical Hydrodynamics: An Introduction, , 2nd ed. John Wiley & Sons, New York
  • Vicsek, T., (1992) Fractal Growth Phenomena, , 2nd ed. World Scientific, Singapore

Citas:

---------- APA ----------
Mocskos, E. & Marshall, G. (2008) . Impact of gravity on thin-layer cell electrochemical deposition. Electronic Transactions on Numerical Analysis, 34, 90-101.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10689613_v34_n_p90_Mocskos [ ]
---------- CHICAGO ----------
Mocskos, E., Marshall, G. "Impact of gravity on thin-layer cell electrochemical deposition" . Electronic Transactions on Numerical Analysis 34 (2008) : 90-101.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10689613_v34_n_p90_Mocskos [ ]
---------- MLA ----------
Mocskos, E., Marshall, G. "Impact of gravity on thin-layer cell electrochemical deposition" . Electronic Transactions on Numerical Analysis, vol. 34, 2008, pp. 90-101.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10689613_v34_n_p90_Mocskos [ ]
---------- VANCOUVER ----------
Mocskos, E., Marshall, G. Impact of gravity on thin-layer cell electrochemical deposition. Electron. Trans. Numer. Anal. 2008;34:90-101.
Available from: https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10689613_v34_n_p90_Mocskos [ ]