Artículo

La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Purpose of review: Galectins, a family of evolutionarily conserved glycan-binding proteins, are involved in the regulation of multiple cellular processes (e.g. immunity, apoptosis, cellular signaling, development, angiogenesis and cellular growth) and diseases (e.g. chronic inflammation, autoimmunity, cancer, infection). We discuss here how galectins contribute to the development of specialized microenvironmental niches during hematopoiesis. Recent findings: An expanding set of data strengthens a role of galectins in hematopoietic differentiation, particularly by setting specific interactions between hematopoietic and stromal cells: galectin-5 is found in reticulocytes and erythroblastic islands suggesting a major role during erythropoiesis; galectin-1 and 3 are involved in thymocyte apoptosis, signaling and intrathymic migration; galectin-1 plays critical roles in pre-BII cells development. Moreover, expression of galectins-1 and 10 are differentially expressed during T-regulatory cell development. Various galectins (3, 4, 5, 9) have been reported to be regulated during myelopoiesis and traffic into intracellular compartments, dictating the cellular distribution of specific glycoproteins and glycosphingolipids. Summary: The abundance of galectins in both extracellular and intracellular compartments, their multifunctional properties and ability to form supramolecular signaling complexes with specific glycoconjugates, make these glycan-binding proteins excellent candidates to mediate interactions between hematopoietic cells and the stromal microenvironment. Their secretion by one of the cellular partners can modulate adhesive properties by cross-linking specific glycoconjugates present on stromal or hematopoietic cells, by favoring the formation of synapses or by creating glycoprotein lattices on the surface of different cell types. Their divergent specificities and affinities for various glycoproteins contribute to the multiplicity of their cellular interactions. © 2011 Wolters Kluwer Health | Lippincott Williams & Wilkin.

Registro:

Documento: Artículo
Título:Galectins and microenvironmental niches during hematopoiesis
Autor:Rabinovich, G.A.; Vidal, M.
Filiación:Instituto de Biología y Medicina (IBYME-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
UMR 5235 CNRS (DIMNP), Université Montpellier II, Montpellier 34095, France
Palabras clave:galectins; hematopoiesis; microenvironmental niches; ecalectin; galectin; galectin 1; galectin 10; galectin 3; galectin 4; galectin 5; glycoconjugate; glycoprotein; glycosphingolipid; unclassified drug; apoptosis; B lymphocyte; cell interaction; erythroblast; hematopoiesis; human; myelopoiesis; priority journal; protein expression; protein family; protein function; protein localization; reticulocyte; review; signal transduction; stroma cell; T lymphocyte; thymocyte; Cell Proliferation; Galectins; Hematopoiesis; Humans
Año:2011
Volumen:18
Número:6
Página de inicio:443
Página de fin:451
DOI: http://dx.doi.org/10.1097/MOH.0b013e32834bab18
Título revista:Current Opinion in Hematology
Título revista abreviado:Curr. Opin. Hematol.
ISSN:10656251
CODEN:COHEF
CAS:galectin 1, 258495-34-0; galectin 3, 208128-56-7; Galectins
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10656251_v18_n6_p443_Rabinovich

Referencias:

  • Takaku, T., Malide, D., Chen, J., Hematopoiesis in 3 dimensions: Human and murine bone marrow architecture visualized by confocal microscopy (2010) Blood, 116, pp. e41-e55
  • Kiel, M.J., Morrison, S.J., Uncertainty in the niches that maintain haematopoietic stem cells (2008) Nature Reviews Immunology, 8 (4), pp. 290-301. , DOI 10.1038/nri2279, PII NRI2279
  • Singbrant, S., Russell, M.R., Jovic, T., Erythropoietin couples erythropoiesis, B lymphopoiesis, and bone homeostasis within the bone marrow microenvironment (2011) Blood, 115, pp. 4689-4698
  • Barondes, S.H., Castronovo, V., Cooper, D.N.W., Cummings, R.D., Drickamer, K., Feizi, T., Gitt, M.A., Rigby, P.W.J., Galectins: A family of animal β-galactoside-binding lectins (1994) Cell, 76 (4), pp. 597-598. , DOI 10.1016/0092-8674(94)90498-7
  • Hirabayashi, J., Hashidate, T., Arata, Y., Nishi, N., Nakamura, T., Hirashima, M., Urashima, T., Kasai, K.-I., Oligosaccharide specificity of galectins: A search by frontal affinity chromatography (2002) Biochimica et Biophysica Acta - General Subjects, 1572 (2-3), pp. 232-254. , DOI 10.1016/S0304-4165(02)00311-2, PII S0304416502003112
  • Yang, R.Y., Rabinovich, G.A., Liu, F.T., Galectins: Structure, function and therapeutic potential (2008) Expert Rev Mol Med, 10, pp. e17
  • Sundblad, V., Croci, D.O., Rabinovich, G.A., Regulated expression of galectin-3, a multifunctional glycan-binding protein, in haematopoietic and nonhaematopoietic tissues Histol Histopathol, 26, pp. 247-265
  • Rabinovich, G.A., Ilarregui, J.M., Conveying glycan information into T-cell homeostatic programs: A challenging role for galectin-1 in inflammatory and tumor microenvironments (2009) Immunol Rev, 230, pp. 144-159
  • Liu, F.T., Rabinovich, G.A., Galectins: Regulators of acute and chronic inflammation (2010) Ann N Y Acad Sci, 1183, pp. 158-182
  • Laderach, D.J., Compagno, D., Toscano, M.A., Dissecting the signal transduction pathways triggered by galectin-glycan interactions in physiological and pathological settings (2010) IUBMB Life, 62, pp. 1-13
  • Delacour, D., Koch, A., Jacob, R., The role of galectins in protein trafficking (2009) Traffic, 10, pp. 1405-1413
  • Zhuo, Y., Bellis, S.L., Emerging role of alpha2,6-sialic acid as a negative regulator of galectin binding and function (2011) J Biol Chem, 286, pp. 5935-5941
  • Rabinovich, G.A., Toscano, M.A., Jackson, S.S., Vasta, G.R., Functions of cell surface galectin-glycoprotein lattices (2007) Current Opinion in Structural Biology, 17 (5), pp. 513-520. , DOI 10.1016/j.sbi.2007.09.002, PII S0959440X07001303, Carbohydrates and glycoconjugates / Biophysical methods
  • Boscher, C., Dennis, J.W., Nabi, I.R., Glycosylation, galectins and cellular signaling (2011) Curr Opin Cell Biol, , [Epub ahead of print]
  • Stillman, B.N., Hsu, D.K., Pang, M., Brewer, C.F., Johnson, P., Liu, F.-T., Baum, L.G., Galectin-3 and galectin-1 bind distinct cell surface glycoprotein receptors to induce T cell death (2006) Journal of Immunology, 176 (2), pp. 778-789
  • Nguyen, J.T., Evans, D.P., Galvan, M., Pace, K.E., Leitenberg, D., Bui, T.N., Baum, L.G., CD45 modulates galectin-1-induced T cell death: Regulation by expression of core 2 O-glycans (2001) Journal of Immunology, 167 (10), pp. 5697-5707
  • Wang, J., Lu, Z.H., Gabius, H.J., Cross-linking of GM1 ganglioside by galectin-1 mediates regulatory T cell activity involving TRPC5 channel activation: Possible role in suppressing experimental autoimmune encephalomyelitis (2009) J Immunol, 182, pp. 4036-4045
  • Rossi, B., Espeli, M., Schiff, C., Gauthier, L., Clustering of pre-B cell integrals induces galectin-1-dependent pre-B cell receptor relocalization and activation (2006) Journal of Immunology, 177 (2), pp. 796-803
  • Fulcher, J.A., Chang, M.H., Wang, S., Galectin-1 co-clusters CD43/CD45 on dendritic cells and induces cell activation and migration through Syk and protein kinase C signaling (2009) J Biol Chem, 284, pp. 26860-26870
  • Ilarregui, J.M., Croci, D.O., Bianco, G.A., Tolerogenic signals delivered by dendritic cells to T cells through a galectin-1-driven immunoregulatory circuit involving interleukin 27 and interleukin 10 (2009) Nat Immunol, 10, pp. 981-991
  • Hsieh, S.H., Ying, N.W., Wu, M.H., Chiang, W.F., Hsu, C.L., Wong, T.Y., Jin, Y.T., Chen, Y.L., Galectin-1, a novel ligand of neuropilin-1, activates VEGFR-2 signaling and modulates the migration of vascular endothelial cells (2008) Oncogene, 27 (26), pp. 3746-3753. , DOI 10.1038/sj.onc.1211029, PII 1211029
  • Bessis, M., Erythroblastic island, functional unity of bone marrow (1958) Rev Hematol, 13, pp. 8-11
  • Manwani, D., Bieker, J.J., The erythroblastic island (2008) Curr Top Dev Biol, 82, pp. 23-53
  • Chasis, J.A., Mohandas, N., Erythroblastic islands: Niches for erythropoiesis (2008) Blood, 112, pp. 470-478
  • Rhodes, M.M., Kopsombut, P., Bondurant, M.C., Price, J.O., Koury, M.J., Adherence to macrophages in erythroblastic islands enhances erythroblast proliferation and increases erythrocyte production by a different mechanism than erythropoietin (2008) Blood, 111 (3), pp. 1700-1708. , http://bloodjournal.hematologylibrary.org/cgi/reprint/111/3/1700, DOI 10.1182/blood-2007-06-098178
  • Hanspal, M., Hanspal, J.S., The association of erythroblasts with macrophages promotes erythroid proliferation and maturation: A 30-kD heparin-binding protein is involved in this contact (1994) Blood, 84 (10), pp. 3494-3504
  • Sato, S., St-Pierre, C., Bhaumik, P., Nieminen, J., Galectins in innate immunity: Dual functions of host soluble beta-galactoside-binding lectins as damageassociated molecular patterns (DAMPs) and as receptors for pathogenassociated molecular patterns (PAMPs (2009) Immunol Rev, 230, pp. 172-187
  • Crocker, P.R., Gordon, S., Isolation and characterization of resident stromal macrophages and hematopoietic cell clusters from mouse bone marrow (1985) Journal of Experimental Medicine, 162 (3), pp. 993-1014. , DOI 10.1084/jem.162.3.993
  • Harrison, F.L., Chesterton, C.J., Erythroid developmental agglutinin is a protein lectin mediating specific cell-cell adhesion between differentiating rabbit erythroblasts (1980) Nature, 286 (5772), pp. 502-504. , DOI 10.1038/286502a0
  • Harrison, F.L., Catt, J.W., Intra- and extracellular distribution of an endogenous lectin during erythropoiesis (1986) J Cell Sci, 84, pp. 201-212
  • Cerra, R.F., Gitt, M.A., Barondes, S.H., Three soluble rat β-galactoside-binding lectins (1985) Journal of Biological Chemistry, 260 (19), pp. 10474-10477
  • Gitt, M.A., Wiser, M.F., Leffler, H., Sequence and mapping of galectin-5, a beta-galactoside-binding lectin, found in rat erythrocytes (1995) J Biol Chem, 270, pp. 5032-5038
  • Wada, J., Kanwar, Y.S., Identification and characterization of galectin-9, a novel β- galactoside-binding mammalian lectin (1997) Journal of Biological Chemistry, 272 (9), pp. 6078-6086. , DOI 10.1074/jbc.272.9.6078
  • Lensch, M., Lohr, M., Russwurm, R., Vidal, M., Kaltner, H., Andre, S., Gabius, H.-J., Unique sequence and expression profiles of rat galectins-5 and -9 as a result of species-specific gene divergence (2006) International Journal of Biochemistry and Cell Biology, 38 (10), pp. 1741-1758. , DOI 10.1016/j.biocel.2006.04.004, PII S1357272506001312
  • Lutomski, D., Fouillit, M., Bourin, P., Mellottee, D., Denize, N., Pontet, M., Bladier, D., Joubert-Caron, R., Externalization and binding of galectin-1 on cell surface of K562 cells upon erythroid differentiation (1997) Glycobiology, 7 (8), pp. 1193-1199. , DOI 10.1093/glycob/7.8.1193
  • Altheide, T.K., Hayakawa, T., Mikkelsen, T.S., Diaz, S., Varki, N., Varki, A., System-wide genomic and biochemical comparisons of sialic acid biology among primates and rodents: Evidence for two modes of rapid evolution (2006) Journal of Biological Chemistry, 281 (35), pp. 25689-25702. , http://www.jbc.org/cgi/reprint/281/35/25689, DOI 10.1074/jbc.M604221200
  • Sadahira, Y., Yasuda, T., Kimoto, T., Regulation of Forssman antigen expression during maturation of mouse stromal macrophages in haematopoietic foci (1991) Immunology, 73, pp. 498-504
  • Yoshida, H., Kawane, K., Koike, M., Mori, Y., Uchiyama, Y., Nagata, S., Phosphatidylserine-dependent engulfment by macrophages of nuclei from erythroid precursor cells (2005) Nature, 437 (7059), pp. 754-758. , DOI 10.1038/nature03964, PII N03964
  • Freeman, G.J., Casasnovas, J.M., Umetsu, D.T., DeKruyff, R.H., TIM genes: A family of cell surface phosphatidylserine receptors that regulate innate and adaptive immunity Immunol Rev, 235, pp. 172-189
  • Zhu, C., Anderson, A.C., Schubart, A., Xiong, H., Imitola, J., Khoury, S.J., Zheng, X.X., Kuchroo, V.K., The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity (2005) Nature Immunology, 6 (12), pp. 1245-1252. , DOI 10.1038/ni1271, PII N1271
  • Stowell, S.R., Karmakar, S., Stowell, C.J., Dias-Baruffi, M., McEver, R.P., Cummings, R.D., Human galectin-1, -2, and -4 induce surface exposure of phosphatidylserine in activated human neutrophils but not in activated T cells (2007) Blood, 109 (1), pp. 219-227. , http://www.bloodjournal.org/cgi/reprint/109/1/219, DOI 10.1182/blood-2006-03-007153
  • Stowell, S.R., Arthur, C.M., Slanina, K.A., Dimeric Galectin-8 induces phosphatidylserine exposure in leukocytes through polylactosamine recognition by the C-terminal domain (2008) J Biol Chem, 283, pp. 20547-20559
  • Lee, J.C.-M., Gimm, J.A., Lo, A.J., Koury, M.J., Krauss, S.W., Mohandas, N., Chasis, J.A., Mechanism of protein sorting during erythroblast enucleation: Role of cytoskeletal connectivity (2004) Blood, 103 (5), pp. 1912-1919. , DOI 10.1182/blood-2003-03-0928
  • Salomao, M., Chen, K., Villalobos, J., Hereditary spherocytosis and hereditary elliptocytosis: Aberrant protein sorting during erythroblast enucleation (2010) Blood, 116, pp. 267-269. , This study relates the aberrant sorting of proteins during enucleation in hereditary spherocytosis and elliptocytosis. Major cytoskeletal proteins (e.g band 3, Rh-associated antigen, glycophorin A or C) are missorted to the extruded nucleus instead of being segregated to the reticulocyte
  • Keerthivasan, G., Small, S., Liu, H., Vesicle trafficking plays a novel role in erythroblast enucleation (2010) Blood, 116, pp. 3331-3340. , Various selective inhibitors and the knockdown of clathrin have been used to demonstrate that endocytic vesicle trafficking has a critical role during enucleation. Endocytic vesicles are targeted to the nucleus in which they accumulate, coalesce and fuse with the plasma membrane contributing to separation between the extruding nucleus and nascent reticulocyte
  • Skutelsky, E., Farquhar, M.G., Variations in distribution of con A receptor sites and anionic groups during red blood cell differentiation in the rat (1976) J Cell Biol, 71, pp. 218-231
  • Skutelsky, E., Bayer, E.A., Cell type related segregation of surface galactosyl containing components at an early developmental stage in hemopoietic bone marrow cells in the rabbit (1983) Journal of Cell Biology, 96 (1), pp. 184-190. , DOI 10.1083/jcb.96.1.184
  • Sano, H., Hsu, D.K., Apgar, J.R., Yu, L., Sharma, B.B., Kuwabara, I., Izui, S., Liu, F.-T., Critical role of galectin-3 in phagocytosis by macrophages (2003) Journal of Clinical Investigation, 112 (3), pp. 389-397. , DOI 10.1172/JCI200317592
  • Chen, K., Liu, J., Heck, S., Resolving the distinct stages in erythroid differentiation based on dynamic changes in membrane protein expression during erythropoiesis (2009) Proc Natl Acad Sci U S A., 106, pp. 17413-17418
  • Zhang, J., Randall, M.S., Loyd, M.R., Mitochondrial clearance is regulated by Atg7-dependent and -independent mechanisms during reticulocyte maturation (2009) Blood, 114, pp. 157-164
  • Liu, J., Guo, X., Mohandas, N., Membrane remodeling during reticulocyte maturation (2010) Blood, 115, pp. 2021-2027
  • Pan, B.T., Johnstone, R.M., Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: Selective externalization of the receptor (1983) Cell, 33 (3), pp. 967-977
  • Harding, C., Heuser, J., Stahl, P., Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes (1983) J Cell Biol, 97, pp. 329-339
  • Iacopetta, B.J., Morgan, E.H., Yeoh, G.C.T., Receptor-mediated endocytosis of transferrin by developing erythroid cells from the fetal rat liver (1983) Journal of Histochemistry and Cytochemistry, 31 (2), pp. 336-344
  • Barres, C., Blanc, L., Bette-Bobillo, P., Galectin-5 is bound onto the surface of rat reticulocyte exosomes and modulates vesicle uptake by macrophages (2010) Blood, 115, pp. 696-705. , Galectin-5 is found associated with the endosomal compartment and on the surface of rat reticulocyte exosomes, suggesting a translocation from the cytosol into the endosome lumen. A possible role in segregation/sorting of suitable galactose-bearing glycoconjugates is discussed
  • Wu, A.M., Singh, T., Wu, J.H., Lensch, M., Andre, S., Gabius, H.-J., Interaction profile of galectin-5 with free saccharides and mammalian glycoproteins: Probing its fine specificity and the effect of naturally clustered ligand presentation (2006) Glycobiology, 16 (6), pp. 524-537. , DOI 10.1093/glycob/cwj102
  • Stechly, L., Morelle, W., Dessein, A.F., Galectin-4-regulated delivery of glycoproteins to the brush border membrane of enterocyte-like cells (2009) Traffic, 10, pp. 438-450
  • Schneider, D., Greb, C., Koch, A., Trafficking of galectin-3 through endosomal organelles of polarized and nonpolarized cells (2010) Eur J Cell Biol, 89, pp. 788-798
  • Merlin, J., Stechly, L., De Beauce, S., Galectin-3 regulates MUC1 and EGFR cellular distribution and EGFR downstream pathways in pancreatic cancer cells (2011) Oncogene, 30, pp. 2514-2525. , This study reports the regulation of MUCI and EGFR internalization and subcellular localization by galectin-3 in pancreatic cancer cells. Depletion of galectin-3 by RNA interference modifies oncogenic signaling pathways downstream of MUC1 and EGF.R
  • Mishra, R., Grzybek, M., Niki, T., Galectin-9 trafficking regulates apical-basal polarity in Madin-Darby canine kidney epithelial cells (2010) Proc Natl Acad Sci U S A., 107, pp. 17633-17638. , Galectin-9 is internalized and recycled back to the apical membrane in MDCK cells. Sorting and delivery of the Forssman glycosphingolipid was impaired in the galectin-9 shRNA cells. This galectin-glycolipid interaction is critical to maintain epithelial integrity and cell polarity
  • Klibi, J., Niki, T., Riedel, A., Blood diffusion and Th1-suppressive effects of galectin-9-containing exosomes released by Epstein-Barr virus-infected nasopharyngeal carcinoma cells (2009) Blood, 113, pp. 1957-1966
  • Zomer, A., Vendrig, T., Hopmans, E.S., Exosomes: Fit to deliver small RNA (2010) Commun Integr Biol, 3, pp. 447-450
  • Byon, J.C., Papayannopoulou, T., MicroRNAs allies or foes in erythropoiesis? (2011) J Cell Physiol, , doi: 10.1002/jcp.22729 [Epub ahead of print]
  • Nagasawa, T., Microenvironmental niches in the bone marrow required for B-cell development (2006) Nature Reviews Immunology, 6 (2), pp. 107-116. , DOI 10.1038/nri1780, PII N1780
  • Monroe, J.G., ITAM-mediated tonic signalling through pre-BCR and BCR complexes (2006) Nat Rev Immunol, 6, pp. 283-294
  • Gauthier, L., Rossi, B., Roux, F., Galectin-1 is a stromal cell ligand of the pre-B cell receptor (BCR) implicated in synapse formation between pre-B and stromal cells and in pre-BCR triggering (2002) Proc Natl Acad Sci U S A., 99, pp. 13014-13019
  • Espeli, M., Mancini, S.J., Breton, C., Impaired B-cell development at the pre- BII-cell stage in galectin-1-deficient mice due to inefficient pre-BII/stromal cell interactions (2009) Blood, 113, pp. 5878-5886
  • Mourcin, F., Breton, C., Tellier, J., Galectin-1 expressing stromal cells constitute a specific niche for pre-BII cell development in mouse bone marrow (2011) Blood, 117, pp. 6552-6561. , In this study, the authors characterized stromal cells that express galectin-1 and constitute a specific cellular niche for pre-BII cells in mouse bone marrow. These stromal cells are distinct from IL7-secreting stromal cells, arguing for a migration of early B cells from IL7+ to galectin-1+ niches during their differentiation
  • Zuniga, E., Rabinovich, G.A., Iglesias, M.M., Gruppi, A., Regulated expression of galectin-1 during B-cell activation and implications for T-cell apoptosis (2001) Journal of Leukocyte Biology, 70 (1), pp. 73-79
  • Tsai, C.M., Chiu, Y.K., Hsu, T.L., Galectin-1 promotes immunoglobulin production during plasma cell differentiation (2008) J Immunol, 181, pp. 4570-4579
  • Acosta-Rodriguez, E.V., Montes, C.L., Motran, C.C., Zuniga, E.I., Liu, F.-T., Rabinovich, G.A., Gruppi, A., Galectin-3 Mediates IL-4-Induced Survival and Differentiation of B Cells: Functional Cross-Talk and Implications during Trypanosoma cruzi Infection (2004) Journal of Immunology, 172 (1), pp. 493-502
  • Hogquist, K.A., Baldwin, T.A., Jameson, S.C., Central tolerance: Learning self-control in the thymus (2005) Nature Reviews Immunology, 5 (10), pp. 772-782. , DOI 10.1038/nri1707
  • Perillo, N.L., Uittenbogaart, C.H., Nguyen, J.T., Baum, L.G., Galectin-1, an endogenous lectin produced by thymic epithelial cells, induces apoptosis of human thymocytes (1997) Journal of Experimental Medicine, 185 (10), pp. 1851-1858. , DOI 10.1084/jem.185.10.1851
  • Pace, K.E., Lee, C., Stewart, P.L., Baum, L.G., Restricted receptor segregation into membrane microdomains occurs on human T cells during apoptosis induced by galectin-1 (1999) Journal of Immunology, 163 (7), pp. 3801-3811
  • Earl, L.A., Bi, S., Baum, L.G., Galectin multimerization and lattice formation are regulated by linker region structure (2011) Glycobiology, 21, pp. 6-12
  • Villa-Verde, D.M.S., Silva-Monteiro, E., Jasiulionis, M.G., Farias-De-Oliveira, D.A., Brentani, R.R., Savino, W., Chammas, R., Galectin-3 modulates carbohydrate-dependent thymocyte interactions with the thymic microenvironment (2002) European Journal of Immunology, 32 (5), pp. 1434-1444. , DOI 10.1002/1521-4141(200205)32:5<1434::AID-IMMU1434>3.0.CO;2-M
  • Silva-Monteiro, E., Lorenzato, L.R., Nihei, O.K., Junqueira, M., Rabinovich, G.A., Hsu, D.K., Liu, F.-T., Villa-Verde, D.M.S., Altered expression of galectin-3 induces cortical thymocyte depletion and premature exit of immature thymocytes during Trypanosoma cruzi infection (2007) American Journal of Pathology, 170 (2), pp. 546-556. , DOI 10.2353/ajpath.2007.060389
  • Bi, S., Earl, L.A., Jacobs, L., Baum, L.G., Structural features of galectin-9 and galectin-1 that determine distinct T cell death pathways (2008) J Biol Chem, 283, pp. 12248-12258
  • Tribulatti, M.V., Mucci, J., Cattaneo, V., Agucero, F., Gilmartin, T., Head, S.R., Campetella, O., Galectin-8 Induces apoptosis in the CD4 highCD8 high thymocyte subpopulation (2007) Glycobiology, 17 (12), pp. 1404-1412. , DOI 10.1093/glycob/cwm104
  • Liu, S.D., Whiting, C.C., Tomassian, T., Endogenous galectin-1 enforces class I-restricted TCR functional fate decisions in thymocytes (2008) Blood, 112, pp. 120-130
  • Rabinovich, G.A., Toscano, M.A., Turning 'sweet' on immunity: Galectin-glycan interactions in immune tolerance and inflammation (2009) Nat Rev Immunol, 9, pp. 338-352
  • Cooper, D., Ilarregui, J.M., Pesoa, S.A., Multiple functional targets of the immunoregulatory activity of galectin-1: Control of immune cell trafficking, dendritic cell physiology, and T-cell fate (2010) Methods Enzymol, 480, pp. 199-244
  • Garin, M.I., Chu, N.-C., Golshayan, D., Cernuda-Morollon, E., Wait, R., Lechler, R.I., Galectin-1: A key effector of regulation mediated by CD4 +CD25 + T cells (2007) Blood, 109 (5), pp. 2058-2065. , http://bloodjournal.hematologylibrary.org/cgi/reprint/109/5/2058, DOI 10.1182/blood-2006-04-016451
  • Kubach, J., Lutter, P., Bopp, T., Stoll, S., Becker, C., Huter, E., Richter, C., Jonuleit, H., Human CD4 +CD25 + regulatory T cells: Proteome analysis identifies galectin-10 as a novel marker essential for their anergy and suppressive function (2007) Blood, 110 (5), pp. 1550-1558. , http://bloodjournal.hematologylibrary.org/cgi/reprint/110/5/1550, DOI 10.1182/blood-2007-01-069229
  • Gieseke, F., Bohringer, J., Bussolari, R., Human multipotent mesenchymal stromal cells use galectin-1 to inhibit immune effector cells Blood, 116, pp. 3770-3779
  • Rabinovich, G.A., Ramhorst, R.E., Rubinstein, N., Corigliano, A., Daroqui, M.C., Kier-Joffe, E.B., Fainboim, L., Induction of allogenic T-cell hyporesponsiveness by galectin-1-mediated apoptotic and non-apoptotic mechanisms (2002) Cell Death and Differentiation, 9 (6), pp. 661-670. , DOI 10.1038/sj/cdd/4401009
  • Cerliani, J.P., Stowell, S.R., Mascanfroni, I.D., Expanding the universe of cytokines and pattern recognition receptors: Galectins and glycans in innate immunity (2011) J Clin Immunol, 31, pp. 10-21
  • Abedin, M.J., Kashio, Y., Seki, M., Nakamura, K., Hirashima, M., Potential roles of galectins in myeloid differentiation into three different lineages (2003) Journal of Leukocyte Biology, 73 (5), pp. 650-656. , DOI 10.1189/jlb.0402163
  • Vas, V., Fajka-Boja, R., Ion, G., Dudics, V., Monostori, E., Uher, F., Biphasic effect of recombinant galectin-1 on the growth and death of early hematopoietic cells (2005) Stem Cells, 23 (2), pp. 279-287. , DOI 10.1634/stemcells.2004-0084
  • Mascanfroni, I.D., Cerliani, J.P., Dergan-Dylon, S., Endogenous lectins shape the function of dendritic cells and tailor adaptive immunity: Mechanisms and biomedical applications (2011) Int Immunopharmacol, 11, pp. 831-838
  • Kuo, P.L., Hung, J.Y., Huang, S.K., Lung cancer-derived galectin-1 mediates dendritic cell anergy through inhibitor of DNA binding 3/IL-10 signaling pathway J Immunol, 186, pp. 1521-1530
  • Barrionuevo, P., Beigier-Bompadre, M., Ilarregui, J.M., Toscano, M.A., Bianco, G.A., Isturiz, M.A., Rabinovich, G.A., A novel function for galectin-1 at the crossroad of innate and adaptive immunity: Galectin-1 regulates monocyte/macrophage physiology through a nonapoptotic EMK-dependent pathway (2007) Journal of Immunology, 178 (1), pp. 436-445
  • MacKinnon, A.C., Farnworth, S.L., Hodkinson, P.S., Regulation of alternative macrophage activation by galectin-3 (2008) J Immunol, 180, pp. 2650-2658
  • Anderson, A.C., Anderson, D.E., Bregoli, L., Hastings, W.D., Kassam, N., Lei, C., Chandwaskar, R., Hafler, D.A., Promotion of tissue inflammation by the immune receptor Tim-3 expressed on innate immune cells (2007) Science, 318 (5853), pp. 1141-1143. , DOI 10.1126/science.1148536
  • Chen, H.-Y., Sharma, B.B., Yu, L., Zuberi, R., Weng, I.-C., Kawakami, Y., Kawakami, T., Liu, F.-T., Role of galectin-3 in mast cell functions: Galectin-3-deficient mast cells exhibit impaired mediator release and defective JNK expression (2006) Journal of Immunology, 177 (8), pp. 4991-4997
  • Niki, T., Tsutsui, S., Hirose, S., Galectin-9 is a high affinity IgE-binding lectin with antiallergic effect by blocking IgE-antigen complex formation (2009) J Biol Chem, 284, pp. 32344-32352
  • Ge, X.N., Bahaie, N.S., Kang, B.N., Allergen-induced airway remodeling is impaired in galectin-3-deficient mice (2010) J Immunol, 185, pp. 1205-1214
  • Nishi, N., Shoji, H., Seki, M., Itoh, A., Miyanaka, H., Yuube, K., Hirashima, M., Nakamura, T., Galectin-8 modulates neutrophil function via interaction with integrin αM (2003) Glycobiology, 13 (11), pp. 755-763. , DOI 10.1093/glycob/cwg102
  • Fernandez, G.C., Ilarregui, J.M., Rubel, C.J., Toscano, M.A., Gomez, S.A., Bompadre, M.B., Isturiz, M.A., Palermo, M.S., Galectin-3 and soluble fibrinogen act in concert to modulate neutrophil activation and survival: Involvement of alternative MAPK pathways (2005) Glycobiology, 15 (5), pp. 519-527. , DOI 10.1093/glycob/cwi026
  • Larson, M.K., Watson, S.P., A product of their environment: Do megakaryocytes rely on extracellular cues for proplatelet formation? (2006) Platelets, 17 (7), pp. 435-440. , DOI 10.1080/09537100600772637, PII P3327T5223V193P4
  • Malara, A., Gruppi, C., Rebuzzini, P., Megakaryocyte-matrix interaction within bone marrow: New roles for fibronectin and factor XIII-A Blood, 117, pp. 2476-2483
  • Pallotta, I., Lovett, M., Rice, W., Bone marrow osteoblastic niche: A new model to study physiological regulation of megakaryopoiesis (2009) PLoS One, 4, pp. e8359
  • D'Atri, L.P., Pozner, R.G., Nahmod, K.A., Paracrine regulation of megakaryo/ thrombopoiesis by macrophages (2011) Exp Hematol, pp. 763-772
  • Pacienza, N., Pozner, R.G., Bianco, G.A., D'Atri, L.P., Croci, D.O., Negrotto, S., Malaver, E., Schattner, M., The immunoregulatory glycan-binding protein galectin-1 triggers human platelet activation (2008) FASEB Journal, 22 (4), pp. 1113-1123. , http://www.fasebj.org/cgi/reprint/22/4/1113, DOI 10.1096/fj.07-9524com

Citas:

---------- APA ----------
Rabinovich, G.A. & Vidal, M. (2011) . Galectins and microenvironmental niches during hematopoiesis. Current Opinion in Hematology, 18(6), 443-451.
http://dx.doi.org/10.1097/MOH.0b013e32834bab18
---------- CHICAGO ----------
Rabinovich, G.A., Vidal, M. "Galectins and microenvironmental niches during hematopoiesis" . Current Opinion in Hematology 18, no. 6 (2011) : 443-451.
http://dx.doi.org/10.1097/MOH.0b013e32834bab18
---------- MLA ----------
Rabinovich, G.A., Vidal, M. "Galectins and microenvironmental niches during hematopoiesis" . Current Opinion in Hematology, vol. 18, no. 6, 2011, pp. 443-451.
http://dx.doi.org/10.1097/MOH.0b013e32834bab18
---------- VANCOUVER ----------
Rabinovich, G.A., Vidal, M. Galectins and microenvironmental niches during hematopoiesis. Curr. Opin. Hematol. 2011;18(6):443-451.
http://dx.doi.org/10.1097/MOH.0b013e32834bab18