Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Bats are atypical small mammals. Size is crucial for bats because it affects most aerodynamic variables and several key echolocation parameters. In turn, scaling relationships of both flight and echolocation have been suggested to constrain bat body size evolution. Previous studies have found a large phylogenetic effect and the inclusion of early Eocene fossil bats contributed to recover idiosyncratic body size change patterns in bats. Here, we test these previous hypotheses of bat body size evolution using a large, comprehensive supermatrix phylogeny (+800 taxa) to optimize body size and examine changes reconstructed along branches. Our analysis provides evidence of rapid stem phyletic nanism, an ancestral value stabilized at 12 g for crown-clade Chiroptera followed by backbone stasis, low-magnitude changes inside established families, and massive body size increase at accelerated rate in pteropodid subclades. Total variation amount explained by pteropodid subclades was 86.3%, with most changes reconstructed as phyletic increases but also apomorphic decreases. We evaluate these macroevolutionary patterns in light of the constraints hypothesis, and in terms of both neutral and adaptive evolutionary models. The reconstructed macroevolution of bat body size led us to propose that echolocation and flight work as successive, nested constraints limiting bat evolution along the body size scale. © 2018, Springer Science+Business Media, LLC, part of Springer Nature.

Registro:

Documento: Artículo
Título:Evolution of Body Mass in Bats: Insights from a Large Supermatrix Phylogeny
Autor:Moyers Arévalo, R.L.; Amador, L.I.; Almeida, F.C.; Giannini, N.P.
Filiación:Unidad Ejecutora Lillo (UEL: FML-CONICET), Tucumán, Argentina
Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA: UBA-CONICET), Buenos Aires, Argentina
Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Tucumán, Argentina
American Museum of Natural History (AMNH), Division of Vertebrate Zoology, Department of Mammalogy, New York, NY, United States
Palabras clave:Body mass reconstruction; Chiroptera; Macroevolution; Nested constraints; Optimization
Año:2018
DOI: http://dx.doi.org/10.1007/s10914-018-9447-8
Título revista:Journal of Mammalian Evolution
Título revista abreviado:J. Mamm. Evol.
ISSN:10647554
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10647554_v_n_p_MoyersArevalo

Referencias:

  • Almeida, F.C., Giannini, N.P., Simmons, N.B., Helgen, K.M., Each flying fox on its own branch: A phylogenetic tree for Pteropus and related genera (Chiroptera: Pteropodidae) (2014) Molecular Phylogenetics and Evolution, 77, pp. 83-95
  • Aguirre, L.F., (2007), (,) Historia Natural, Distribución y Conservaciólos Murciélagos de Bolivia. Centro de Ecología y Difusión Simón I. Patiño. Santa Cruz, Bolivia; Amador, L.I., Giannini, N.P., Phylogeny and evolution of body mass in didelphid marsupials (Marsupialia: Didelphimorphia: Didelphidae) (2018) Org Divers Evol, 16 (3), pp. 641-657
  • Amador, L.I., Moyers Arévalo, R.L., Almeida, F.C., Catalano, S.A., Giannini, N.P., Bat systematics in the light of unconstrained analyses of a comprehensive molecular supermatrix (2018) J Mammal Evol, 25 (1), pp. 37-70
  • Baker, J., Meade, A., Pagel, M., Venditti, C., Adaptive evolution toward larger size in mammals (2015) Proc Natl Acad Sci USA, 112 (16), pp. 5093-5098. , PID: 25848031
  • Barclay, R.M., Brigham, R.M., Prey detection, dietary niche breadth, and body size in bats: why are aerial insectivorous bats so small? (1991) Am Nat, 137 (5), pp. 693-703
  • Barclay, R.M., Brigham, R.M., Constraints on optimal foraging: a field test of prey discrimination by echolocating insectivorous hats (1994) Anim Behav, 48 (5), pp. 1013-1021
  • Beaulieu, J.M., Jhwueng, D.C., Boettiger, C., O’Meara, B.C., Modeling stabilizing selection: expanding the Ornstein–Uhlenbeck model of adaptive evolution (2012) Evolution, 66 (8), pp. 2369-2383. , PID: 22834738
  • Biewener, A.A., Muscle function in avian flight: achieving power and control (2011) Philos Trans R Soc B, 366 (1570), pp. 1496-1506
  • Bininda-Emonds, O.R.P., Cardillo, M., Jones, K.E., MacPhee, R.D.E., Beck, R.M.B., Grenyer, R., Price, S.A., Purvis, A., The delayed rise of present-day mammals (2007) Nature, 446 (7135), pp. 507-512. , PID: 17392779
  • Bokma, F., Godinot, M., Maridet, O., Ladevèze, S., Costeur, L., Solé, F., Gheerbrant, E., Laurin, M., Testing for Depéret’s Rule (body size increase) in mammals using combined extinct and extant data (2016) Syst Biol, 65, pp. 98-108. , PID: 26508768
  • Bonaccorso, F.J., (1998) Bats of Papua New Guinea, , Conservation International, Washington, D.C
  • Bullen, R.D., McKenzie, N.L., Scaling bat wingbeat frequency and amplitude (2002) J Exp Biol, 205 (17), pp. 2615-2626. , PID: 12151367
  • Calder, W.A., (1996) Size, Function, and Life History, , Dover Publications, New York
  • Carter, R.T., Adams, R.A., Postnatal ontogeny of the cochlea and flight ability in Jamaican fruit bats (Phyllostomidae) with implications for the evolution of echolocation (2015) J Anat, 226 (4), pp. 301-308. , PID: 25831957
  • Cooper, N., Purvis, A., Body size evolution in mammals: complexity in tempo and mode (2010) Am Nat, 175 (6), pp. 727-738. , PID: 20394498
  • Cooper, N., Thomas, G.H., Venditti, C., Meade, A., Freckleton, R.P., A cautionary note on the use of Ornstein Uhlenbeck models in macroevolutionary studies (2016) Biol J Linn Soc, 118, pp. 64-77
  • Churchill, S., (1998) Australian Bats, , Reed New Holland, Sydney
  • Dammhahn, M., Goodman, S.M., Trophic niche differentiation and microhabitat utilization revealed by stable isotope analyses in a dry-forest bat assemblage at Ankarana, northern Madagascar (2014) J Trop Ecol, 30, pp. 97-109
  • Decher, J., Fahr, J., A conservation assessment of bats (Chiroptera) of Draw River, Boi-Tano, and Krokosua Hills forest reserves in the western region of Ghana (2007) Myotis, 43, pp. 5-30
  • (2007) Morcegos do Brasil, , Londrina, dos, Reis, NR, Peracchi, AL, Pedro, WA, de, Lima, IP, (eds
  • Eick, G.N., Jacobs, D.S., Matthee, C.A., A nuclear DNA phylogenetic perspective on the evolution of echolocation and historical biogeography of extant bats (Chiroptera) (2005) Mol Biol Evol, 22 (9), pp. 1869-1886. , PID: 15930153
  • Eiting, T.P., Gunnell, G.F., Global completeness of the bat fossil record (2009) J Mammal Evol, 16 (3), pp. 151-173
  • Fenton, B., Ratcliffe, J., Animal behavior: eavesdropping on bats (2004) Nature, 429 (6992), pp. 612-613. , PID: 15190335
  • Fenton, M.B., The foraging behaviour and ecology of animal-eating bats (1990) Canadian J Zool, 68 (3), pp. 411-422
  • Gannon, M.R., Kurta, A., Rodríguez-Durán, A., Willig, M.R., (2005) Bats of Puerto Rico: An Island Focus and a Caribbean Perspective, , Texas Tech University Press, Lubbock
  • Garbutt, N., (2007) Mammals of Madagascar: A Complete Guide, , Yale University Press, New Haven and London
  • Giannini, N.P., Canonical phylogenetic ordination (2003) Syst Biol, 52 (5), pp. 684-695. , PID: 14530135
  • Giannini, N.P., Gunnell, G.F., Habersetzer, J., Simmons, N.B., Early evolution of body size in bats (2012) Evolutionary History of Bats: Fossils, Molecules, and Morphology, pp. 530-555. , Gunnell GF, Simmons NB, (eds), Cambridge University Press, Cambridge
  • Goloboff, P.A., Farris, J.S., Nixon, K.C., TNT, a free program for phylogenetic analysis (2008) Cladistics, 24 (5), pp. 774-786
  • Goloboff, P.A., Mattoni, C.I., Quinteros, A.S., Continuous characters analyzed as such (2006) Cladistics, 22, pp. 589-601
  • Goodman, S.M., Cardiff, S.G., Ranivo, J., Russell, A.L., Yoder, A.D., A new species of Emballonura (Chiroptera: Emballonuridae) from the dry regions of Madagascar (2006) Am Mus Novitates, pp. 1-24
  • Gould, G.C., MacFadden, B.J., Gigantism, dwarfism, and Cope’s rule: nothing in evolution makes sense without a phylogeny (2004) Bull Am Mus Nat Hist, 285, pp. 219-237
  • Gunnell, G.F., Simmons, N.B., Fossil evidence and the origin of bats (2005) J Mammal Evol, 12, pp. 209-246
  • Harvey, M.J., Altenbach, J.S., Best, T.L., (2011) Bats of the United States and Canada, , The Hopkins University Press, Baltimore
  • Hasan, N.H., Khan, F.A.A., Senawi, J., Ketol, B., Sait, I., Abdullah, M.T., A report on bats survey at Air Panas-GuaMusang, Kelantan, Malaysia (2012) J Trop Biol Conserv, 9 (2), pp. 156-162
  • Heller, K.G., Echolocation and body size in insectivorous bats: the case of the giant naked bat Cheiromeles torquatus (Molossidae) (1995) Le Rhinolophe, 11, pp. 27-38
  • Huang, J.C.C., Jazdzyk, E.L., Nusalawo, M., Maryanto, I., Wiantoro, S., Kingston, T., A recent bat survey reveals Bukit Barisan Selatan Landscape as a chiropteran diversity hotspot in Sumatra (2014) Acta Chiropt, 16 (2), pp. 413-449
  • Hutcheon, J.M., Garland, T., Are megabats big? (2004) J Mammal Evol, 11 (3), pp. 257-277
  • Isaac, N.J., Jones, K.E., Gittleman, J.L., Purvis, A., Correlates of species richness in mammals: body size, life history, and ecology (2005) Am Nat, 165 (5), pp. 600-607. , PID: 15795856
  • Jones, G., Does echolocation constrain the evolution of body size in bats? (1996) Symp Zool Soc Lond, 69, pp. 111-128
  • Jones, G., Scaling of echolocation call parameters in bats (1999) J Exp Biol, 202 (23), pp. 3359-3367. , PID: 10562518
  • Kalko, E.K., Schnitzler, H.U., How echolocating bats approach and acquire food (1998) Bat Biology and Conservation, pp. 197-204. , Kunz TH, Racey PA, (eds), Smithsonian Institution Press, Washington, D.C
  • Kawai, K., Mikhail, P., Kondo, N., Maksim, A., Victor, N., Ohtanishi, N., Dewa, H., Bats from Kunashir and Iturup Island (2014) Bull Hokkaido Univ Mus, 4, pp. 74-81
  • Kruskop, S.V., New record of poorly known bat Myotis phanluongi (Mammalia, Chiroptera) from southern Vietnam (2013) Russian J Theriol, 12, pp. 79-81
  • Kunz, T.H., Pierson, E.D., Bats of the world: an introduction (1994) Walker’s Bats of the World, pp. 1-46. , Novak RM, (ed), Johns Hopkins University Press, Baltimore
  • Lim, B.K., Engstrom, M.D., Reid, F.A., Simmons, N.B., Voss, R.S., Fleck, D.W., A new species of Peropteryx (Chiroptera: Emballonuridae) from western Amazonia with comments on phylogenetic relationships within the genus (2010) Am Mus Novitates, 3686, pp. 1-20
  • Lu, D., Zhou, C.Q., Liao, W.B., Sexual size dimorphism lacking in small mammals. North-Western (2014) J Zool, 10 (1), pp. 53-59
  • Magalhaēs, J.P., Costa, J., A database of vertebrate longevity records and their relation to other life-history traits (2009) J Evol Biol, 22, pp. 1770-1774. , PID: 19522730
  • McNab, B.K., The evolution of energetics in birds and mammals (2007) The Quintessential Naturalist: Honoring the Life and Legacy of Oliver P, 134, pp. 67-110. , Pearson, Univ Calif Publ Zool, (,),. In:, Kelt, ED, Lessa, EP, Salazar-Bravo, J, Patton, JL, (eds
  • Mendes, P., (2011), (,) Prioridades globais para a aconservação e características biológicas associadas ao risco de extinção em morcegos (Chiroptera: Mammalia). Instituto de Ciências Biológicas. Programa de Pós-graduação em Ecología e Evolução. Universidade Federal de Goiás. Goiânia; Meredith, R.W., Janečka, J.E., Gatesy, J., Ryder, O.A., Fisher, C.A., Teeling, E.C., Goodbla, A., Murphy, W.J., Impacts of the Cretaceous terrestrial revolution and KPg extinction on mammal diversification (2011) Science, 334 (6055), pp. 521-524. , PID: 21940861
  • Monadjem, A., Richards, L., Taylor, P.J., Stoffberg, S., High diversity of pipistrelloid bats (Vespertilionidae: Hypsugo, Neoromicia and Pipistrellus) in a West African rainforest with the description of a new species (2013) Zool J Linn Soc, 167, pp. 191-207
  • Norberg, U.M., (1990) Vertebrate Flight, , Springer, Berlin Heidelberg New York
  • Norberg, U.M., Wing design, flight performance, and habitat use in bats (1994) Ecological Morphology: Integrative Organismal Biology, pp. 205-239. , (,),. In:, Wainwright, PC, Reilly, SM, (eds),., University of Chicago Press, Chicago
  • Norberg, U.M., Rayner, J.M.V., Ecological morphology and flight in bats (Mammalia: Chiroptera): wing adaptations, flight performance, foraging strategy and echolocation (1987) Philos Trans R Soc Lond, 316, pp. 337-419
  • Norberg, U.M.L., Norberg, R.A., Scaling of wingbeat frequency with body mass in bats and limits to maximum bat size (2012) J Exp Biol, 215 (5), pp. 711-722. , PID: 22323193
  • Novacek, M.J., Auditory features and affinities of the Eocene bats Icaronycteris and Palaeochiropteryx (Microchiroptera, incertae sedis) (1987) Am Mus Novitates, 2877, pp. 1-18
  • O'Leary, M.A., Bloch, J.I., Flynn, J.J., Gaudin, T.J., Giallombardo, A., Giannini, N.P., Goldberg, S.L., Cirranello, A.L., The placental mammal ancestor and the post–K-Pg radiation of placentals (2013) Science, 339 (6120), pp. 662-667. , PID: 23393258
  • Pacheco, V., Cadenillas, R., Velazco, S., Salas, E., Fajardo, U., Noteworthy bat records from the Pacific Tropical rainforest region and adjacent dry forest in northwestern Peru (2007) Acta Chiropt, 9 (2), pp. 409-422
  • Parsons, S., Riskin, D.K., Hermanson, J.W., Echolocation call production during aerial and terrestrial locomotion by New Zealand's enigmatic lesser short-tailed bat, Mystacina tuberculata (2010) J Exp Biol, 213 (4), pp. 551-557. , PID: 20118305
  • Patterson, B.D., Webala, P.W., Keys to the Bats (Mammalia: Chiroptera) of East Africa (2012) Fieldiana Life and Earth Sci, 6, pp. 1-60
  • Pennycuick, C.J., Mechanics of flight (1975) Avian Biology, pp. 1-75. , Farner DS, King JR, (eds), Academic Press, London, New York, San Francisco
  • Rao, C.R., The use and interpretation of principal component analysis in applied research (1964) Sankhya, 26, pp. 329-358
  • Rayner, J.M.V., Vertebrate flapping flight mechanisms and aerodynamics, and the evolution of flight in bats (1986) Biona Report no. 5: Bat flight. Fledermausflug, pp. 27-74. , In:, Natctigall, W, (ed
  • Rinderknecht, A., Blanco, R.E., The largest fossil rodent (2008) Proc R Soc Lond [Biol], 275 (1637), pp. 923-928
  • Safi, K., Meiri, S., Jones, K.E., (2013), (,) Evolution of body size bats. In:, Smith, FA, Lyons, SK, (eds) Animal Body Size: Linking Pattern and Process across Space, Time, and Taxonomic Group. University of Chicago Press, Chicago and London, 95–115; Safi, K., Seid, M.A., Dechmann, D.K., Bigger is not always better: when brains get smaller (2005) Biol Lett, 1 (3), pp. 283-286. , PID: 17148188
  • Sánchez-Villagra, M.R., Aguilera, O., Horovitz, I., The anatomy of the world's largest extinct rodent (2003) Science, 301 (5640), pp. 1708-1710. , PID: 14500978
  • Schober, W., Grimmberger, E., (1997) The Bats of Europe and North America; Knowing Them, Identifying Them, Protecting Them, , TFH Publications, Neptune City
  • Sedlock, J.L., Jose, R.P., Vog, J.M., Paguntalan, L.M.J., Cariño, A.B., A survey of bats in a karst landscapte in the central Philippines (2014) Acta Chiropt, 16 (1), pp. 197-211
  • Simmons, N.B., Order Chiroptera (2005) Mammals Species of the World: A Taxonomic and Geographic Reference, 3rd edn, pp. 312-529. , Wilson DE, Reeder DM, (eds), John Hopkins University Press, Baltimore
  • Simmons, N.B., Seymour, K.L., Habersetzer, J., Gunnell, G.F., Primitive Early Eocene bat from Wyoming and the evolution of flight and echolocation (2008) Nature, 451 (7180), pp. 818-821. , PID: 18270539
  • Simmons, N.B., Seymour, K.L., Habersetzer, J., Gunnell, G.F., Inferring echolocation in ancient bats (2010) Nature, 466 (7309), pp. 939-942
  • Smith, F.A., Lyons, S.K., Ernest, S.M., Jones, K.E., Kaufman, D.M., Dayan, T., Marquet, P.A., Haskell, J.P., Body mass of Late Quaternary mammals: ecological archives (2003) Ecology, 84 (12), p. 3403
  • Smith, T., Habersetzer, J., Simmons, N.B., Gunnell, G.F., Systematics and paleobiogeography of early bats (2012) Evolutionary History of Bats, pp. 23-66. , Gunnell GF, Simmons NB, (eds), Cambridge University Press, Cambridge
  • Smith, F.A., Lyons, S.K., Jones, K.E., Maurer, B.A., Brown, J.H., The influence of flight on patterns of body size diversity and heritability (2013) Animal Body Size: Linking Pattern and Process Across Space, Time, and Taxonomic Group, pp. 187-205. , Smith FA, Lyons SK, (eds), Chicago University Press, Chicago and London
  • Speakman, J.R., Racey, P.A., No cost of echolocation for bats in flight (1991) Nature, 350 (6317), p. 421. , PID: 2011191
  • Teeling, E.C., Dool, S., Springer, M.S., Phylogenies, fossils and functional genes: the evolution of echolocation in bats (2012) Evolutionary History of Bats, pp. 1-22. , Gunnell GF, Simmons NB, (eds), Cambridge University Press, Cambridge
  • Teeling, E.C., Springer, M.S., Madsen, O., Bates, P., O'brien, S.J., Murphy, W.J., A molecular phylogeny for bats illuminates biogeography and the fossil record (2005) Science, 307 (5709), pp. 580-584. , PID: 15681385
  • Ter Braak, C.J.F., Ordination (1995) Data Analysis in Community and Landscape Ecology, pp. 91-173. , Jongman RHG, Braak CFJ, Tongeren OFR, (eds), Pudoc, Wageningen
  • Ter Braak, C.F.J., Smilauer, P., (1998) CANOCO reference manual and user’s guide to CANOCO for Windows: software for canonical community ordination, , version 4.0. Microcomputer Power, (,), Ithaca
  • Thiagavel, J., Cechetto, C., Santana, S.E., Jakobsen, L., Warrant, E.J., Ratcliffe, J.M., Auditory opportunity and visual constraint enabled the evolution of echolocation in bats (2018) Nat Commun, 9 (1), p. 98. , PID: 29311648
  • Thong, V.D., Puechmaille, S.J., Denzinger, A., Bates, P.J., Dietz, C., Csorba, G., Bates, P.J.J., Schnitzler, H.U., Systematics of the Hipposideros turpis complex and a description of a new subspecies from Vietnam (2012) Mammal Rev, 42 (2), pp. 166-192
  • Threlfall, C., Law, B., Penman, T., Banks, P.B., Ecological processes in urban landscapes: mechanisms influencing the distribution and activity of insectivorous bats (2011) Ecography, 34 (5), pp. 814-826
  • Uyeda, J.C., Harmon, L., (2014) bayou: Bayesian Fitting of Ornstein-Uhlenbeck Models to Phylogenies, , R package version 1.0.1
  • Uyeda, J.C., Eastman, J., Harmon, L., (2014) bayou: Bayesian fitting of Ornstein-Uhlenbeck models to phylogenies, , R package version 1.1
  • Van Den Bussche, R.A., Hoofer, S.R., Phylogenetic relationships among recent chiropteran families and the importance of choosing appropriate out-group taxa (2004) J Mammal, 85 (2), pp. 321-330
  • Venditti, C., Meade, A., Pagel, M., Multiple routes to mammalian diversity (2011) Nature, 479 (7373), pp. 393-396. , PID: 22012260
  • Veselka, N., McErlain, D.D., Holdsworth, D.W., Eger, J.L., Chhem, R.K., Mason, M.J., Brain, K.L., Fenton, M.B., A bony connection signals laryngeal echolocation in bats (2010) Nature, 463 (7283), pp. 939-942. , PID: 20098413
  • Wang, Z., Zhu, T., Xue, H., Fang, N., Zhang, J., Zhang, L., Pang, J., Zhang, S., Prenatal development supports a single origin of laryngeal echolocation in bats (2017) Nat Ecol Evol, 1, p. 0021
  • Zhang, J.S., Han, N.J., Jones, G., Lin, L.K., Zhang, J.P., Zhu, G.J., Huang, D.W., Zhang, S.Y., A new species of Barbastella (Chiroptera: Vespertilionidae) from north China (2007) J Mammal, 88 (6), pp. 1393-1403

Citas:

---------- APA ----------
Moyers Arévalo, R.L., Amador, L.I., Almeida, F.C. & Giannini, N.P. (2018) . Evolution of Body Mass in Bats: Insights from a Large Supermatrix Phylogeny. Journal of Mammalian Evolution.
http://dx.doi.org/10.1007/s10914-018-9447-8
---------- CHICAGO ----------
Moyers Arévalo, R.L., Amador, L.I., Almeida, F.C., Giannini, N.P. "Evolution of Body Mass in Bats: Insights from a Large Supermatrix Phylogeny" . Journal of Mammalian Evolution (2018).
http://dx.doi.org/10.1007/s10914-018-9447-8
---------- MLA ----------
Moyers Arévalo, R.L., Amador, L.I., Almeida, F.C., Giannini, N.P. "Evolution of Body Mass in Bats: Insights from a Large Supermatrix Phylogeny" . Journal of Mammalian Evolution, 2018.
http://dx.doi.org/10.1007/s10914-018-9447-8
---------- VANCOUVER ----------
Moyers Arévalo, R.L., Amador, L.I., Almeida, F.C., Giannini, N.P. Evolution of Body Mass in Bats: Insights from a Large Supermatrix Phylogeny. J. Mamm. Evol. 2018.
http://dx.doi.org/10.1007/s10914-018-9447-8