Abstract:
The application of Candida antarctica lipase B as catalyst in the synthesis of two examples of nitrogen polymers is described. Firstly, we report a novel linear polyamidoamine oligomer, obtained by polymerization of ethyl acrylate and N-methyl-1,3-diaminopropane, catalyzed by Candida antarctica lipase B immobilized on polypropylene. The second part of the chapter describes an efficient route for the synthesis of a novel β-peptoid oligomer with hydroxyalkyl pendant groups in the nitrogen atom, through the polymerization of ethyl N-(2-hydroxyethyl)-β-alaninate catalyzed by Candida antarctica lipase B physically adsorbed within a macroporous poly(methyl methacrylate-co-butyl methacrylate) resin. Moreover, two derivatives of the β-peptoid oligomer were prepared: by acetylation and by grafting polycaprolactone. This last process was performed through ring-opening polymerization of caprolactone from the β-peptoid pendant hydroxyl groups and afforded a brush copolymer. The products were blended with polycaprolactone to make films by solvent casting. The inclusion of the acyl derivatives of the β-peptoid to polycaprolactone affected the morphology of the film yielding micro- and nanostructured patterns. The obtained products showed biomedical applications. © Springer Science+Business Media, LLC, part of Springer Nature 2018.
Registro:
Documento: |
Artículo
|
Título: | Chemoenzymatic synthesis of nitrogen polymers with biomedical applications catalyzed by lipases |
Autor: | Baldessari, A.; Liñares, G.G. |
Filiación: | Facultad de Ciencias Exactas y Naturales, Laboratorio de Biocatálisis, Departamento de Química Orgánica y UMYMFOR, Universidad de Buenos Aires, Buenos Aires, Argentina
|
Palabras clave: | Aza-Michael addition and aminolysis reactions; Lipases; Nitrogen polymers; Polyamidoamine; Poly[N-(2-hydroxyethyl)-β-propylamide-g-polycaprolactone]; 1,3 propanediamine; acrylic acid ethyl ester; lipase B; n methyl 1,3 diaminopropane; nitrogen; oligomer; polyamidoamine; polycaprolactone; polymer; polypropylene; triacylglycerol lipase; unclassified drug; acetylation; aminolysis; aqueous solution; biocompatibility; Burkholderia cepacia; Candida antarctica; carbon nuclear magnetic resonance; catalyst; enzyme synthesis; matrix assisted laser desorption ionization time of flight mass spectrometry; Michael addition; molecular weight; nonhuman; polymerization; proton nuclear magnetic resonance; ring opening; scanning electron microscopy; ultraviolet radiation |
Año: | 2018
|
Volumen: | 1835
|
Página de inicio: | 359
|
Página de fin: | 376
|
DOI: |
http://dx.doi.org/10.1007/978-1-4939-8672-9_20 |
Título revista: | Methods in Molecular Biology
|
Título revista abreviado: | Methods Mol. Biol.
|
ISSN: | 10643745
|
CAS: | 1,3 propanediamine, 109-76-2; acrylic acid ethyl ester, 140-88-5; nitrogen, 7727-37-9; polycaprolactone, 24980-41-4, 25248-42-4; polypropylene, 25085-53-4, 9003-07-0; triacylglycerol lipase, 9001-62-1
|
Registro: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10643745_v1835_n_p359_Baldessari |
Referencias:
- Shoda, S., Kobayashi, A., Kobayashi, S., Chapter11. Production of polymers by white biotechnology (2016) White Biotechnology for Sustainable Chemistry, pp. 274-309. , https://doi.org/10.1039/9781782624080-00274, The Royal Society of Chemistry, London
- Shoda, S.-I., Uyama, H., Kadokawa, J.-I., Kimura, S., Kobayashi, S., Enzymes as green catalysts for precision macromolecular synthesis (2016) Chem Rev, 116 (4), pp. 2307-2413. , https://doi.org/10.1021/acs.chemrev.5b00472
- Pellis, A., Herrero Acero, E., Gardossi, L., Ferrario, V., Guebitz, G.M., Renewable building blocks for sustainable polyesters: New biotechnological routes for greener plastics (2016) Polym Int, 65 (8), pp. 861-871. , https://doi.org/10.1002/pi.5087
- Duchiron, S.W., Pollet, E., Givry, S., Avérous, L., Enzymatic synthesis of poly(-ε-caprolactone-co-ε-thiocaprolactone) (2017) Eur Polym J, 87, pp. 147-158. , https://doi.org/10.1016/j.eurpolymj.2016.12.024
- Kobayashi, S., Recent developments in lipase-catalyzed synthesis of polyesters (2009) Macromol Rapid Commun, 30 (4-5), pp. 237-266. , https://doi.org/10.1002/marc.200800690
- Garcia Linares, G., Baldessari, A., Lipases as efficient catalysts in the synthesis of monomers and polymers with biomedical applications (2013) Curr Org Chem, 17 (7), pp. 719-743
- Bi, Y., Zhou, H., Jia, H., Wei, P., Polydopamine-mediated preparation of an enzyme-immobilized microreactor for the rapid production of wax ester (2017) RSC Adv, 7 (20), pp. 12283-12291
- Poulhès, F., Mouysset, D., Gil, G., Bertrand, M.P., Gastaldi, S., Speeding-up enzyme-catalyzed synthesis of polyamides using ω-amino-α-alkoxy-acetate as monomer (2013) Polymer, 54 (14), pp. 3467-3471
- Corici, L., Pellis, A., Ferrario, V., Ebert, C., Cantone, S., Gardossi, L., Understanding potentials and restrictions of solvent-free enzymatic polycondensation of Itaconic acid: An experimental and computational analysis (2015) Adv Synth Catal, 357 (8), pp. 1763-1774. , https://doi.org/10.1002/adsc.201500182
- Rustoy, E.M., Sato, Y., Nonami, H., Erra-Balsells, R., Baldessari, A., Lipase-catalyzed synthesis and characterization of copolymers from ethyl acrylate as the only monomer starting material (2007) Polymer, 48 (6), pp. 1517-1525
- Monsalve, L.N., Kaniz Fatema, M., Nonami, H., Erra-Balsells, R., Baldessari, A., Lipasecatalyzed synthesis and characterization of a novel linear polyamidoamine oligomer (2010) Polymer, 51 (14), pp. 2998-3005. , https://doi.org/10.1016/j.polymer.2010.04.071
- Kadokawa, J.I., Kobayashi, S., Polymer synthesis by enzymatic catalysis (2010) Curr Opin Chem Biol, 14 (2), pp. 145-153. , https://doi.org/10.1016/j.cbpa.2009.11.020
- Chanquia, S.N., Boscaro, N., Alché, L., Baldessari, A., Liñares, G.G., An efficient lipase-catalyzed synthesis of fatty acid derivatives of vanillylamine with Antiherpetic activity in acyclovir-resistant strains (2017) Chemistryselect, 2 (4), pp. 1537-1543
- García Liñares, G., Antonela Zígolo, M., Simonetti, L., Longhi, S.A., Baldessari, A., Enzymatic synthesis of bile acid derivatives and biological evaluation against Trypanosoma cruzi (2015) Bioorg Med Chem, 23 (15), pp. 4804-4814. , https://doi.org/10.1016/j.bmc.2015.05.035
- Ló Pez-Iglesias, M., Gotor-Fernández, V., Recent advances in biocatalytic promiscuity: Hydrolase-catalyzed reactions for nonconventional transformations (2015) Chem Rec, 15 (4), pp. 743-759. , https://doi.org/10.1002/tcr.201500008
- García Liñares, G., Arroyo Mañez, P., Baldessari, A., Lipase-catalyzed synthesis of substituted phenylacetamides: Hammett analysis and computational study of the enzymatic aminolysis (2014) Eur J Org Chem, 2014 (29), pp. 6439-6450. , https://doi.org/10.1002/ejoc.201402749
- Monsalve, L.N., Petroselli, G., Erra-Ballsells, R., Vázquez, A., Baldessari, A., Chemoenzymatic synthesis of novel N-(2-hydroxyethyl)-β-peptoid oligomer derivatives and application to porous polycaprolactone films (2014) Polym Int, 63 (8), pp. 1523-1530. , https://doi.org/10.1002/pi.4660
- Kurtoglu, Y.E., Mishra, M.K., Kannan, S., Kannan, R.M., Drug release characteristics of PAMAM dendrimer-drug conjugates with different linkers (2010) Int J Pharm, 384 (1-2), pp. 189-194. , https://doi.org/10.1016/j.ijpharm.2009.10.017
- Ranucci, E., Spagnoli, G., Ferruti, P., Sgouras, D., Duncan, R., Poly(Amidoamine)s with potential as drug carriers: Degradation and cellular toxicity (1991) J Biomater Sci Polym Ed, 2 (4), pp. 303-315. , https://doi.org/10.1163/156856291X00197
- Khayat, Z., Griffiths, P.C., Grillo, I., Heenan, R.K., King, S.M., Duncan, R., Characterising the size and shape of polyamidoamines in solution as a function of pH using neutron scattering and pulsed-gradient spin-echo NMR (2006) Int J Pharm, 317 (2), pp. 175-186. , https://doi.org/10.1016/j.ijpharm.2006.03.003
- Ferruti, P., Manzoni, S., Richardson, S., Duncan, R., Pattrick, N.G., Mendichi, R., Casolaro, M., Amphoteric linear poly(Amidoamine) s as endosomolytic polymers: Correlation between physicochemical and biological properties (2000) Macromolecules, 33 (21), pp. 7793-7800. , https://doi.org/10.1021/ma000378h
- Lai, P.-S., Lou, P.-J., Peng, C.-L., Pai, C.-L., Yen, W.-N., Huang, M.-Y., Young, T.-H., Shieh, M.-J., Doxorubicin delivery by polyamidoamine dendrimer conjugation and photochemical internalization for cancer therapy (2007) J Control Release, 122 (1), pp. 39-46. , https://doi.org/10.1016/j.jconrel.2007.06.012
- Milhem, O.M., Myles, C., McKeown, N.B., Attwood, D., D’Emanuele, A., Polyamidoamine Starburst® dendrimers as solubility enhancers (2000) Int J Pharm, 197 (1-2), pp. 239-241. , https://doi.org/10.1016/S0378-5173(99)00463-9
- Tanzi, M.C., Rusconi, L., Barozzi, C., Ferruti, P., Angiolini, L., Nocentini, M., Barone, V., Barbucci, R., Synthesis and characterization of piperazine-derived poly(Amido-amine)s with different distributions of amido-and aminogroups along the macromolecular chain (1984) Polymer, 25 (6), pp. 863-868. , https://doi.org/10.1016/0032-3861(84)90019-3
- Hartmann, L., Krause, E., Antonietti, M., Börner, H.G., Solid-phase supported polymer synthesis of sequence-defined, multifunctional poly(Amidoamines) (2006) Biomacromolecules, 7 (4), pp. 1239-1244. , https://doi.org/10.1021/bm050884k
- Pattrick, N.G., Richardson, S., Casolaro, M., Ferruti, P., Duncan, R., Poly(Amidoamine)-mediated intracytoplasmic delivery of ricin A-chain and gelonin (2001) J Control Release, 77 (3), pp. 225-232. , https://doi.org/10.1016/S0168-3659(01)00476-X
- Gussoni, M., Greco, F., Ferruti, P., Ranucci, E., Ponti, A., Zetta, L., Poly(Amidoamine) s carrying TEMPO residues for NMR imaging applications (2008) New J Chem, 32 (2), pp. 323-332. , https://doi.org/10.1039/B712896G
- Ranucci, E., Ferruti, P., Suardi, M.A., Manfredi, A., Poly(Amidoamine)s with 2-dithiopyridine side substituents as intermediates to peptide-polymer conjugates (2007) Macromol Rapid Commun, 28 (11), pp. 1243-1250. , https://doi.org/10.1002/marc.200700139
- Franchini, J., Ranucci, E., Ferruti, P., Rossi, M., Cavalli, R., Synthesis, physicochemical properties, and preliminary biological characterizations of a novel amphoteric agmatinebased poly(Amidoamine) with RGD-like repeating units (2006) Biomacromolecules, 7 (4), pp. 1215-1222. , https://doi.org/10.1021/bm060054m
- Ferruti, P., Marchisio, M.A., Barbucci, R., Synthesis, physico-chemical properties and biomedical applications of poly(Amidoamine)s (1985) Polymer, 26 (9), pp. 1336-1348. , https://doi.org/10.1016/0032-3861(85)90309-X
- Ferruti, P., Poly(Amidoamine)s: Past, present, and perspectives (2013) J Polym Sci a Polym Chem, 51 (11), pp. 2319-2353. , https://doi.org/10.1002/pola.26632
- Laursen, J.S., Engel-Andreasen, J., Olsen, C.A., β-peptoid foldamers at last (2015) Acc Chem Res, 48 (10), pp. 2696-2704. , https://doi.org/10.1021/acs.accounts.5b00257
- Mándity, I.M., Fülöp, F., An overview of peptide and peptoid foldamers in medicinal chemistry (2015) Expert Opin Drug Discovery, 10 (11), pp. 1163-1177. , https://doi.org/10.1517/17460441.2015.1076790
- Lin, S., Yu, X., Tu, Y., Xu, H., Cheng, S., Jia, L., Poly([small beta]-alanoid-block-[small beta]-alanine)s: Synthesis via cobalt-catalyzed carbonylative polymerization and selfassembly (2010) Chem Commun, 46 (24), pp. 4273-4275. , https://doi.org/10.1039/C0CC00324G
- Jia, L., Sun, H., Shay, J.T., Allgeier, A.M., Hanton, S.D., Living alternating copolymerization of N-alkylaziridines and carbon monoxide as a route for synthesis of poly-β-peptoids (2002) J am Chem Soc, 124 (25), pp. 7282-7283. , https://doi.org/10.1021/ja0263691
- Imamura, Y., Watanabe, N., Umezawa, N., Iwatsubo, T., Kato, N., Tomita, T., Higuchi, T., Inhibition of γ-secretase activity by helical β-peptide foldamers (2009) J am Chem Soc, 131 (21), pp. 7353-7359. , https://doi.org/10.1021/ja9001458
- Ulery, B.D., Nair, L.S., Laurencin, C.T., Biomedical applications of biodegradable polymers (2011) J Polym Sci B, 49 (12), pp. 832-864. , https://doi.org/10.1002/polb.22259
- Plackett, D.V., Holm, V.K., Johansen, P., Ndoni, S., Nielsen, P.V., Sipilainen-Malm, T., Södergård, A., Verstichel, S., Characterization of L-polylactide and L-polylactide-polycaprolactone co-polymer films for use in cheesepackaging applications (2006) Packag Technol Sci, 19 (1), pp. 1-24. , https://doi.org/10.1002/pts.704
- Zhu, Y., Gao, C., Liu, X., Shen, J., Surface modification of polycaprolactone membrane via aminolysis and biomacromolecule immobilization for promoting cytocompatibility of human endothelial cells (2002) Biomacromolecules, 3 (6), pp. 1312-1319
- Ludueña, L.N., Alvarez, V.A., Vazquez, A., Processing and microstructure of PCL/clay nanocomposites (2007) Mater Sci Eng A, 460-461, pp. 121-129. , https://doi.org/10.1016/j.msea.2007.01.104
- Miao, Z.-M., Cheng, S.-X., Zhang, X.-Z., Zhuo, R.-X., Synthesis, characterization, and degradation behavior of amphiphilic poly-α,-β-[N-(2-hydroxyethyl)-l-aspartamide]-g-poly(ε-caprolactone) (2005) Biomacromolecules, 6 (6), pp. 3449-3457. , https://doi.org/10.1021/bm050551n
- Yuan, C., Lu, H.-C., Li, Q.-Z., Yang, S., Zhao, Q.-L., Huang, J., Wei, L.-H., Ma, Z., Synthesis of well-defined amphiphilic polymethylene-bpoly(ε-caprolactone)-b-poly(acrylic acid) triblock copolymer via a combination of polyhomologation, ring-opening polymerization, and atom transfer radical polymerization (2012) J Polym Sci a Polym Chem, 50 (12), pp. 2398-2405. , https://doi.org/10.1002/pola.26015
- Ku, S.H., Lee, S.H., Park, C.B., Synergic effects of nanofiber alignment and electroactivity on myoblast differentiation (2012) Biomaterials, 33 (26), pp. 6098-6104. , https://doi.org/10.1016/j.biomaterials.2012.05.018
- Monsalve, L.N., Gillanders, F., Baldessari, A., Promiscuous behavior of Rhizomucor miehei lipase in the synthesis of N-substituted β-amino esters (2012) Eur J Org Chem, 2012 (6), pp. 1164-1170. , https://doi.org/10.1002/ejoc.201101624
Citas:
---------- APA ----------
Baldessari, A. & Liñares, G.G.
(2018)
. Chemoenzymatic synthesis of nitrogen polymers with biomedical applications catalyzed by lipases. Methods in Molecular Biology, 1835, 359-376.
http://dx.doi.org/10.1007/978-1-4939-8672-9_20---------- CHICAGO ----------
Baldessari, A., Liñares, G.G.
"Chemoenzymatic synthesis of nitrogen polymers with biomedical applications catalyzed by lipases"
. Methods in Molecular Biology 1835
(2018) : 359-376.
http://dx.doi.org/10.1007/978-1-4939-8672-9_20---------- MLA ----------
Baldessari, A., Liñares, G.G.
"Chemoenzymatic synthesis of nitrogen polymers with biomedical applications catalyzed by lipases"
. Methods in Molecular Biology, vol. 1835, 2018, pp. 359-376.
http://dx.doi.org/10.1007/978-1-4939-8672-9_20---------- VANCOUVER ----------
Baldessari, A., Liñares, G.G. Chemoenzymatic synthesis of nitrogen polymers with biomedical applications catalyzed by lipases. Methods Mol. Biol. 2018;1835:359-376.
http://dx.doi.org/10.1007/978-1-4939-8672-9_20