Artículo

Jani, S.; Jackson, A.; Davies-Sala, C.; Chiem, K.; Soler-Bistué, A.; Zorreguieta, A.; Tolmasky, M.E. "Assessment of external guide sequences’ (EGS) efficiency as inducers of RNase P-mediated cleavage of mRNA target molecules" (2018) Methods in Molecular Biology. 1737:89-98
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

RNase P is a ribozyme consisting of a catalytic RNA molecule and, depending on the organism, one or more cofactor proteins. It was initially identified as the enzyme that mediates cleavage of precursor tRNAs at the 5′-end termini to generate the mature tRNAs. An important characteristic of RNase P is that its specificity depends on the structure rather than the sequence of the RNA substrate. Any RNA species that interacts with an antisense molecule (called external guide sequence, EGS) and forms the appropriate structure can be cleaved by RNase P. This property is the basis for EGS technology, an antisense methodology for inhibiting gene expression by eliciting RNase P-mediated cleavage of a target mRNA molecule. EGS technology is being developed to design therapies against a large variety of diseases. An essential milestone in developing EGSs as therapies is the assessment of the efficiency of antisense molecules to induce cleavage of the target mRNA and evaluate their effect in vivo. Here, we describe simple protocols to test the ability of EGSs to induce cleavage of a target mRNA in vitro and to induce a phenotypic change in growing cells. © 2018, Springer Science+Business Media, LLC.

Registro:

Documento: Artículo
Título:Assessment of external guide sequences’ (EGS) efficiency as inducers of RNase P-mediated cleavage of mRNA target molecules
Autor:Jani, S.; Jackson, A.; Davies-Sala, C.; Chiem, K.; Soler-Bistué, A.; Zorreguieta, A.; Tolmasky, M.E.
Filiación:Center for Applied Biotechnology Studies, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, United States
Fundación Instituto Leloir, IIBBA-CONICET, and FCEyN, University of Buenos Aires, Aires, Argentina
Palabras clave:Aminoglycoside; Antibiotic resistance; Antisense; Ribozyme; RNase P; antisense oligonucleotide; external guide sequence; messenger RNA; ribonuclease P; unclassified drug; antiinfective agent; antisense oligonucleotide; bacterial RNA; cell penetrating peptide; guide RNA; messenger RNA; ribonuclease P; RNA precursor; bacterial cell; bacterial growth; cell division; gene expression; in vitro study; phenotype; protein cleavage; protein targeting; antibiotic resistance; bacterium; drug effect; genetics; metabolism; Anti-Bacterial Agents; Bacteria; Cell-Penetrating Peptides; Drug Resistance, Bacterial; Oligoribonucleotides, Antisense; Ribonuclease P; RNA Precursors; RNA, Bacterial; RNA, Guide; RNA, Messenger
Año:2018
Volumen:1737
Página de inicio:89
Página de fin:98
DOI: http://dx.doi.org/10.1007/978-1-4939-7634-8_6
Título revista:Methods in Molecular Biology
Título revista abreviado:Methods Mol. Biol.
ISSN:10643745
CAS:ribonuclease P, 71427-00-4; Anti-Bacterial Agents; Cell-Penetrating Peptides; Oligoribonucleotides, Antisense; Ribonuclease P; RNA Precursors; RNA, Bacterial; RNA, Guide; RNA, Messenger
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10643745_v1737_n_p89_Jani

Referencias:

  • McClorey, G., Wood, M.J., An overview of the clinical application of antisense oligonucleotides for RNA-targeting therapies (2015) Curr Opin Pharmacol, 24, pp. 52-58. , https://doi.org/10.1016/j.coph.2015.07.005
  • Marwick, C., First “antisense” drug will treat CMV retinitis (1998) JAMA, 280 (10), p. 871
  • Ricotta, D.N., Frishman, W., Mipomersen: A safe and effective antisense therapy adjunct to statins in patients with hypercholesterolemia (2012) Cardiol Rev, 20 (2), pp. 90-95. , https://doi.org/10.1097/CRD.0b013e31823424be
  • Lim, K.R., Maruyama, R., Yokota, T., Eteplirsen in the treatment of Duchenne muscular dystrophy (2017) Drug Des Devel Ther, 11, pp. 533-545. , https://doi.org/10.2147/DDDT.S97635
  • Chiriboga, C.A., Swoboda, K.J., Darras, B.T., Iannaccone, S.T., Montes, J., De Vivo, D.C., Norris, D.A., Bishop, K.M., Results from a phase 1 study of nusinersen (ISIS-SMN(Rx)) in children with spinal muscular atrophy (2016) Neurology, 86 (10), pp. 890-897. , https://doi.org/10.1212/WNL.0000000000002445
  • Burnett, J.C., Rossi, J.J., RNA-based therapeutics: Current progress and future prospects (2012) Chem Biol, 19 (1), pp. 60-71. , https://doi.org/10.1016/j.chembiol.2011.12.008
  • Sridharan, K., Gogtay, N.J., Therapeutic nucleic acids: Current clinical status (2016) Br J Clin Pharmacol, 82 (3), pp. 659-672. , https://doi.org/10.1111/bcp.12987
  • Kole, R., Krainer, A.R., Altman, S., RNA therapeutics: Beyond RNA interference and antisense oligonucleotides (2012) Nat Rev Drug Discov, 11 (2), pp. 125-140. , https://doi.org/10.1038/nrd3625
  • Rasmussen, L.C., Sperling-Petersen, H.U., Mortensen, K.K., Hitting bacteria at the heart of the central dogma: Sequence-specific inhibition (2007) Microb Cell Fact, 6, p. 24. , https://doi.org/10.1186/1475-2859-6-24
  • Sarno, R., Ha, H., Weinsetel, N., Tolmasky, M.E., Inhibition of aminoglycoside 6′-N-acetyltransferase type Ib-mediated amikacin resistance by antisense oligodeoxynucleotides (2003) Antimicrob Agents Chemother, 47 (10), pp. 3296-3304
  • Davies-Sala, C., Soler-Bistue, A., Bonomo, R.A., Zorreguieta, A., Tolmasky, M.E., External guide sequence technology: A path to development of novel antimicrobial therapeutics (2015) Ann N Y Acad Sci, 1354, pp. 98-110. , https://doi.org/10.1111/nyas.12755
  • Woodford, N., Wareham, D.W., Tackling antibiotic resistance: A dose of common antisense? (2009) J Antimicrob Chemother, 63 (2), pp. 225-229. , https://doi.org/10.1093/jac/dkn467
  • Matzov, D., Bashan, A., Yonath, A., A bright future for antibiotics? (2017) Annu Rev Biochem, 86, pp. 567-583. , https://doi.org/10.1146/annurev-biochem-061516-044617
  • Lundblad, E.W., Altman, S., Inhibition of gene expression by RNase P (2010) N Biotechnol, 27 (3), pp. 212-221. , https://doi.org/10.1016/j.nbt.2010.03.003
  • Davies Sala, C., Soler-Bistue, A.J., Korprapun, L., Zorreguieta, A., Tolmasky, M.E., Inhibition of cell division induced by external guide sequences (EGS technology) targeting ftsZ (2012) Plos One, 7 (10). , https://doi.org/10.1371/journal.pone.0047690
  • Guerrier-Takada, C., Salavati, R., Altman, S., Phenotypic conversion of drug-resistant bacteria to drug sensitivity (1997) Proc Natl Acad Sci U S A, 94 (16), pp. 8468-8472
  • Shen, N., Ko, J.H., Xiao, G., Wesolowski, D., Shan, G., Geller, B., Izadjoo, M., Altman, S., Inactivation of expression of several genes in a variety of bacterial species by EGS technology (2009) Proc Natl Acad Sci U S A, 106 (20), pp. 8163-8168. , https://doi.org/10.1073/pnas.0903491106
  • Soler Bistue, A.J., Ha, H., Sarno, R., Don, M., Zorreguieta, A., Tolmasky, M.E., External guide sequences targeting the aac(6′)-Ib mRNA induce inhibition of amikacin resistance (2007) Antimicrob Agents Chemother, 51 (6), pp. 1918-1925. , https://doi.org/10.1128/AAC.01500-06
  • Soler Bistue, A.J., Martin, F.A., Vozza, N., Ha, H., Joaquin, J.C., Zorreguieta, A., Tolmasky, M.E., Inhibition of aac(6′)-Ib-mediated amikacin resistance by nuclease-resistant external guide sequences in bacteria (2009) Proc Natl Acad Sci U S A, 106 (32), pp. 13230-13235. , https://doi.org/10.1073/pnas.0906529106
  • Altman, S., Ribonuclease P (2011) Philos Trans R Soc Lond B Biol Sci, 366 (1580), pp. 2936-2941. , https://doi.org/10.1098/rstb.2011.0142
  • Forster, A.C., Altman, S., External guide sequences for an RNA enzyme (1990) Science, 249 (4970), pp. 783-786
  • Guerrier-Takada, C., Gardiner, K., Marsh, T., Pace, N., Altman, S., The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme (1983) Cell, 35 (3), pp. 849-857
  • Gopalan, V., Vioque, A., Altman, S., RNase P: Variations and uses (2002) J Biol Chem, 277 (9), pp. 6759-6762. , https://doi.org/10.1074/jbc.R100067200
  • Deleavey, G.F., Damha, M.J., Designing chemically modified oligonucleotides for targeted gene silencing (2012) Chem Biol, 19 (8), pp. 937-954. , https://doi.org/10.1016/j.chembiol.2012.07.011
  • Kurreck, J., Antisense technologies. Improvement through novel chemical modifications (2003) Eur J Biochem, 270 (8), pp. 1628-1644
  • Jackson, A., Jani, S., Sala, C.D., Soler-Bistue, A.J., Zorreguieta, A., Tolmasky, M.E., Assessment of configurations and chemistries of bridged nucleic acids-containing oligomers as external guide sequences: A methodology for inhibition of expression of antibiotic resistance genes (2016) Biol Methods Protoc, 1 (1). , https://doi.org/10.1093/biomethods/bpw001
  • Sawyer, A.J., Wesolowski, D., Gandotra, N., Stojadinovic, A., Izadjoo, M., Altman, S., Kyriakides, T.R., A peptide-morpholino oligomer conjugate targeting Staphylococcus aureus gyrA mRNA improves healing in an infected mouse cutaneous wound model (2013) Int J Pharm, 453 (2), pp. 651-655. , https://doi.org/10.1016/j.ijpharm.2013.05.041
  • Lin, J., Nishino, K., Roberts, M.C., Tolmasky, M., Aminov, R.I., Zhang, L., Mechanisms of antibiotic resistance (2015) Front Microbiol, 6 (34). , https://doi.org/10.3389/fmicb.2015.00034
  • Boucher, H.W., Talbot, G.H., Bradley, J.S., Edwards, J.E., Gilbert, D., Rice, L.B., Scheld, M., Bartlett, J., Bad bugs, no drugs: No ESKAPE! An update from the Infectious Diseases Society of America (2009) Clin Infect Dis, 48 (1), pp. 1-12. , https://doi.org/10.1086/595011
  • Ramirez, M.S., Traglia, G.M., Lin, D., Tran, T., Tolmasky, M.E., Plasmid-mediated antibiotic resistance and virulence in Gram-negatives: The Klebsiella pneumoniae paradigm (2014) Microbiol Spectr, 2 (5), p. 1
  • Li, Y., Guerrier-Takada, C., Altman, S., Targeted cleavage of mRNA in vitro by RNase P from Escherichia coli (1992) Proc Natl Acad Sci U S A, 89 (8), pp. 3185-3189
  • Tolmasky, M.E., Aminoglycoside-modifying enzymes: Characteristics, localization, and dissemination (2007) Enzyme-Mediated Resistance to Antibiotics: Mechanisms, Dissemination, and Prospects for Inhibition, pp. 35-52. , Bonomo R, Tolmasky ME, ASM Press, Washington, DC
  • Ramirez, M.S., Nikolaidis, N., Tolmasky, M.E., Rise and dissemination of aminoglycoside resistance: The aac(6′)-Ib paradigm (2013) Front Microbiol, 4 (121). , https://doi.org/10.3389/fmicb.2013.00121
  • Tolmasky, M.E., Chamorro, R.M., Crosa, J.H., Marini, P.M., Transposon-mediated amikacin resistance in Klebsiella pneumoniae (1988) Antimicrob Agents Chemother, 32 (9), pp. 1416-1420
  • Ramirez, M.S., Tolmasky, M.E., Aminoglycoside modifying enzymes (2010) Drug Resist Updat, 13 (6), pp. 151-171. , https://doi.org/10.1016/j.drup.2010.08.003
  • Mingorance, J., Rivas, G., Velez, M., Gomez-Puertas, P., Vicente, M., Strong FtsZ is with the force: Mechanisms to constrict bacteria (2010) Trends Microbiol, 18 (8), pp. 348-356. , https://doi.org/10.1016/j.tim.2010.06.001
  • Ukkonen, K., Vasala, A., Ojamo, H., Neubauer, P., High-yield production of biologically active recombinant protein in shake flask culture by combination of enzyme-based glucose delivery and increased oxygen transfer (2011) Microb Cell Fact, 10, p. 107. , https://doi.org/10.1186/1475-2859-10-107
  • Barry, A.L., Reller, L.B., Miller, G.H., Washington, J.A., Schoenknect, F.D., Peterson, L.R., Hare, R.S., Knapp, C., Revision of standards for adjusting the cation content of Mueller-Hinton broth for testing susceptibility of Pseudomonas aeruginosa to aminoglycosides (1992) J Clin Microbiol, 30 (3), pp. 585-589
  • Abramoff, M., Magelhaes, P., Ram, S., Image processing with Image J (2004) J Biophotonics, 11, pp. 36-42
  • Copolovici, D.M., Langel, K., Eriste, E., Langel, U., Cell-penetrating peptides: Design, synthesis, and applications (2014) ACS Nano, 8 (3), pp. 1972-1994. , https://doi.org/10.1021/nn4057269
  • Lehto, T., Ezzat, K., Wood, M.J., El Andaloussi, S., Peptides for nucleic acid delivery (2016) Adv Drug Del Rev, 106, pp. 172-182. , https://doi.org/10.1016/j.addr.2016.06.008
  • Reissmann, S., Cell penetration: Scope and limitations by the application of cell-penetrating peptides (2014) J Pept Sci, 20 (10), pp. 760-784. , https://doi.org/10.1002/psc.2672
  • Lopez, C., Arivett, B.A., Actis, L.A., Tolmasky, M.E., Inhibition of AAC(6′)-Ib-mediated resistance to amikacin in Acinetobacter baumannii by an antisense peptide-conjugated 2′,4′-bridged nucleic acid-NC-DNA hybrid oligomer (2015) Antimicrob Agents Chemother, 59 (9), pp. 5798-5803. , https://doi.org/10.1128/AAC.01304-15
  • Arivett, B.A., Fiester, S.E., Ream, D.C., Centron, D., Ramirez, M.S., Tolmasky, M.E., Actis, L.A., Draft genome of the multidrug-resistant Acinetobacter baumannii strain A155 clinical isolate (2015) Genome Announc, 3 (2), pp. e00212-e00215. , https://doi.org/10.1128/genomeA.00212-15

Citas:

---------- APA ----------
Jani, S., Jackson, A., Davies-Sala, C., Chiem, K., Soler-Bistué, A., Zorreguieta, A. & Tolmasky, M.E. (2018) . Assessment of external guide sequences’ (EGS) efficiency as inducers of RNase P-mediated cleavage of mRNA target molecules. Methods in Molecular Biology, 1737, 89-98.
http://dx.doi.org/10.1007/978-1-4939-7634-8_6
---------- CHICAGO ----------
Jani, S., Jackson, A., Davies-Sala, C., Chiem, K., Soler-Bistué, A., Zorreguieta, A., et al. "Assessment of external guide sequences’ (EGS) efficiency as inducers of RNase P-mediated cleavage of mRNA target molecules" . Methods in Molecular Biology 1737 (2018) : 89-98.
http://dx.doi.org/10.1007/978-1-4939-7634-8_6
---------- MLA ----------
Jani, S., Jackson, A., Davies-Sala, C., Chiem, K., Soler-Bistué, A., Zorreguieta, A., et al. "Assessment of external guide sequences’ (EGS) efficiency as inducers of RNase P-mediated cleavage of mRNA target molecules" . Methods in Molecular Biology, vol. 1737, 2018, pp. 89-98.
http://dx.doi.org/10.1007/978-1-4939-7634-8_6
---------- VANCOUVER ----------
Jani, S., Jackson, A., Davies-Sala, C., Chiem, K., Soler-Bistué, A., Zorreguieta, A., et al. Assessment of external guide sequences’ (EGS) efficiency as inducers of RNase P-mediated cleavage of mRNA target molecules. Methods Mol. Biol. 2018;1737:89-98.
http://dx.doi.org/10.1007/978-1-4939-7634-8_6