Abstract:
Neurons rely on complex axonal transport mechanisms that mediate the intracellular dynamics of proteins, vesicles, and mitochondria along their high polarized structure. The fast improvement of live imaging techniques of fluorescent cargos allowed the identification of the diverse motion properties of different transported molecules. These properties arise as the result of molecular interactions between many players involved in axonal transport. Motor proteins, microtubule tracks, cargo association, and even axonal viscosity contribute to the proper axonal dynamics of different cargos. The unique properties in each cargo determine their distribution and location that is relevant to ensure neuronal cell activity and survival. This chapter provides a computational-based method for the generation of cargo trajectories and the identification of different motion regimes while cargo moves along axons. Then, the procedure to extract relevant parameters from active, diffusive, and confined motion is provided. These properties will allow a better comprehension of the nature and characteristics of cargo motion in living cells, therefore contributing to understanding the consequences of transport defects that arise during diseases of the nervous system. © Springer Science+Business Media, LLC 2018.
Registro:
Documento: |
Artículo
|
Título: | Methods for quantitative analysis of axonal cargo transport |
Autor: | Alloatti, M.; Bruno, L.; Falzone, T.L. |
Filiación: | Instituto de Biología Celular y Neurociencias (IBCN) CONICET-UBA, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina Facultad de Ciencias Exactas y Naturales, Departamento de Física (IFIBA) CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina Instituto de Biología y Medicina Experimental (IBYME) CONICET, Buenos Aires, Argentina
|
Palabras clave: | Anterograde; Axonal transport; Diffusive; Pauses; Retrograde; Reversions; Run lengths; Segmental velocities; animal cell; animal cell culture; DNA vector; genetic transfection; human; human cell; human cell culture; imaging; mouse; nerve cell culture; nerve fiber transport; nonhuman; pluripotent stem cell; quantitative analysis; rat; animal; axon; biology; cytology; metabolism; molecular imaging; nerve cell; nerve fiber transport; procedures; software; Animals; Axonal Transport; Axons; Computational Biology; Humans; Mice; Molecular Imaging; Neurons; Rats; Software |
Año: | 2018
|
Volumen: | 1727
|
Página de inicio: | 217
|
Página de fin: | 226
|
DOI: |
http://dx.doi.org/10.1007/978-1-4939-7571-6_16 |
Título revista: | Methods in Molecular Biology
|
Título revista abreviado: | Methods Mol. Biol.
|
ISSN: | 10643745
|
Registro: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10643745_v1727_n_p217_Alloatti |
Referencias:
- Maday, S., Twelvetrees, A., Moughamian, A., Holzbaur, E.F., Axonal transport: Cargo-specific mechanisms of motility and regulation (2014) Neuron, 84, pp. 292-309
- Ito, K., Enomoto, H., Retrograde transport of neurotrophic factor signaling: Implications in neuronal development and pathogenesis (2016) J Biochem, 160, pp. 77-85
- De Vos, K.J., Hafezparast, M., Neurobiology of axonal transport defects in motor neuron diseases: Opportunities for translational research? (2017) Neurobiol Dis, 105, 283p
- Encalada, S.E., Goldstein, L., Biophysical challenges to axonal transport: Motor-cargo deficiencies and neurodegeneration (2014) Annu Rev Biophys, 43, pp. 141-169
- Hirokawa, N., Niwa, S., Tanaka, Y., Molecular motors in neurons: Transport mechanisms and roles in brain function, development, and disease (2010) Neuron, 68, pp. 610-638
- Brady, S.T., Morfini, G.A., Regulation of motor proteins, axonal transport deficits and adult-onset neurodegenerative diseases (2017) Neurobiol Dis, 105, pp. 273-282
- Lacovich, V., Espindola, S.L., Alloatti, M., Pozo Devoto, V., Cromberg, L.E., Čarná, M.E., Forte, G., Falzone, T.L., Tau isoforms imbalance impairs the axonal transport of the amyloid precursor protein in human neurons (2017) J Neurosci, 37, pp. 58-69
- Pozo Devoto, V., Dimopoulous, N., Alloatti, M., Cromberg, L., Otero, M., Saez, T., Pardi, B., Falzone, T., α-Synuclein control of mitochondrial homeostasis in human-derived neurons is disrupted by mutations associated with Parkinson’s disease (2017) Sci Rep, 7 (1), 5042p
- Xu, C.-C., Denton, K.R., Wang, Z.-B., Zhang, X., Li, X.-J., Abnormal mitochondrial transport and morphology as early pathological changes in human models of spinal muscular atrophy (2016) Dis Model Mech, 9, pp. 39-49
- Mertens, J., Stüber, K., Poppe, D., Doerr, J., Ladewig, J., Brüstle, O., Koch, P., Embryonic stem cell-based modeling of tau pathology in human neurons (2013) Am J Pathol, 182, pp. 1769-1779
- Encalada, S.E., Szpankowski, L., Xia, C.H., Goldstein, L.S., Stable kinesin and dynein assemblies drive the axonal transport of mammalian prion protein vesicles (2011) Cell, 144, pp. 551-565
- Duff, K., Knight, H., Refolo, L.M., Sanders, S., Yu, X., Picciano, M., Malester, B., Davies, P., Characterization of pathology in transgenic mice over-expressing human genomic and cDNA tau transgenes (2000) Neurobiol Dis, 7, pp. 87-98
- Dixit, R., Goldman, Y.E., Holzbaur, E.L., Differential regulation of dynein and kinesin motor proteins by tau (2008) Science, 319, pp. 1086-1089
- Magnani, E., Fan, J., Gasparini, L., Golding, M., Williams, M., Schiavo, G., Goedert, M., Spillantini, M.G., Interaction of tau protein with the dynactin complex (2007) EMBO J, 26, pp. 4546-4554
- Perrot, R., Julien, J.-P., Real-time imaging reveals defects of fast axonal transport induced by disorganization of intermediate filaments (2009) FASEB J, 23, pp. 3213-3225
- Otero, M.G., Alloatti, M., Cromberg, L.E., Almenar-Queralt, A., Encalada, S.E., Pozo Devoto, V.M., Bruno, L., Falzone, T.L., Fast axonal transport of the proteasome complex depends on membrane interaction and molecular motor function (2014) J Cell Sci, 127, pp. 1537-1549
- Reis, G.F., Yang, G., Szpankowski, L., Weaver, C., Shah, S.B., Robinson, J.T., Hays, T.S., Goldstein, L.S., Molecular motor function in axonal transport in vivo probed by genetic and computational analysis in Drosophila (2012) Mol Biol Cell, 23, pp. 1700-1714
- Meijering, E., Dzyubachyk, O., Smal, I., Methods for cell and particle tracking (2012) Methods in Enzymology, pp. 183-200. , Conn PM, Academic, New York
- Gu, Y., Sun, W., Wang, G., Jeftinija, K., Jeftinija, S., Fang, N., Rotational dynamics of cargos at pauses during axonal transport (2012) Nat Commun, 3, 1030p. , https://doi.org/10.1038/ncomms2037
- Gal, N., Lechtman-Goldstein, D., Weihs, D., Particle tracking in living cells: A review of the mean square displacement method and beyond (2013) Rheol Acta, 52, pp. 425-443
- Fu, M.M., Holzbaur, E.L., JIP1 regulates the directionality of APP axonal transport by coordinating kinesin and dynein motors (2013) J Cell Biol, 202, pp. 495-508
- Leidel, C., Longoria Rafael, A., Gutierrez, F.M., Shubeita George, T., Measuring molecular motor forces in vivo: Implications for tug-of-war models of bidirectional transport (2012) Biophys J, 103, pp. 492-500
Citas:
---------- APA ----------
Alloatti, M., Bruno, L. & Falzone, T.L.
(2018)
. Methods for quantitative analysis of axonal cargo transport. Methods in Molecular Biology, 1727, 217-226.
http://dx.doi.org/10.1007/978-1-4939-7571-6_16---------- CHICAGO ----------
Alloatti, M., Bruno, L., Falzone, T.L.
"Methods for quantitative analysis of axonal cargo transport"
. Methods in Molecular Biology 1727
(2018) : 217-226.
http://dx.doi.org/10.1007/978-1-4939-7571-6_16---------- MLA ----------
Alloatti, M., Bruno, L., Falzone, T.L.
"Methods for quantitative analysis of axonal cargo transport"
. Methods in Molecular Biology, vol. 1727, 2018, pp. 217-226.
http://dx.doi.org/10.1007/978-1-4939-7571-6_16---------- VANCOUVER ----------
Alloatti, M., Bruno, L., Falzone, T.L. Methods for quantitative analysis of axonal cargo transport. Methods Mol. Biol. 2018;1727:217-226.
http://dx.doi.org/10.1007/978-1-4939-7571-6_16