Artículo

Este artículo esta disponible en la web de forma gratuita y puede ser descargado en su versión final
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Registro:

Documento: Artículo
Título:Chaos and crises in more than two dimensions
Autor:Moresco, P.; Dawson, S.P.
Filiación:Departamento de Física, Facultad de Ciencias Exactas y Naturales, U.B.A., Ciudad Universitaria, United States
Instituto de Astronomía y Física del Espacio (CONICET), Casilla de Correo 67 Socursal 28, Buenos Aires, 1428, Argentina
Año:1997
Volumen:55
Número:5
Página de inicio:5350
Página de fin:5360
DOI: http://dx.doi.org/10.1103/PhysRevE.55.5350
Título revista:Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics
Título revista abreviado:Phys Rev E.
ISSN:1063651X
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_1063651X_v55_n5_p5350_Moresco.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_1063651X_v55_n5_p5350_Moresco

Referencias:

  • Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A., (1994) Phys. Rev. Lett., 73, p. 1927
  • Dawson, S.P., (1996) Phys. Rev. Lett., 76, p. 4348
  • Solari, H.G., Natiello, M.A., Mindlin, G.B., (1996) Nonlinear Dynamics. A Two Way Trip from Physics to Math, , IOP Publishing Co, Bristol
  • Devaney, R., (1993) An Introduction to Chaotic Dynamical Systems, , Addison-Wesley, New York
  • Grebogi, C., (1987) Phys. Rev. A, 36, p. 3522
  • Grebogi, C., (1988) Phys. Rev. A, 37, p. 1711
  • Grebogi, C., (1983) Physica, 7, p. 181
  • Grebogi, C., (1987) Phys. Rev. A, 36, p. 5365
  • Ott, E., (1993) Chaos in Dynamical Systems, p. 151. , Cambridge University Press, Canada
  • T. Tél, in Directions in Chaos, Vol. 3, edited by H. Bai-lin (World Scientific, Singapore, 1990), p. 149; T. Tél, in STATPHYS 19, edited by H. Bai-lin (World Scientific, Singapore, 1996); Lathrop, D.P., Kostelich, E., (1989) Phys. Rev. A, 40, p. 4028
  • Ditto, W.L., (1990) Phys. Rev. Lett., 65, p. 3211
  • Mindlin, G.B., (1991) J. Nonlinear Sci., 1, p. 147
  • Jánosi, I.M., (1994) Phys. Rev. Lett., 73, p. 529
  • Jánosi, I., Tél, T., (1994) Phys. Rev. E, 49, p. 2756
  • Smale, S., (1967) Bull. Am. Math. Soc., 73, p. 747
  • Guckenheimer, J., Holmes, P., (1986) Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, , Springer, New York
  • Ott, E., (1993) Phys. Rev. Lett., 71, p. 4134
  • Ott, E., Sommerer, J., (1994) Phys. Lett. A, 188, p. 39
  • Benedicks, M., Carleson, L., (1991) Ann. Math., 133, p. 73
  • Benedicks, M., (1993) Inv. Math., 112, p. 541
  • Ergodic Theory of Dynamical Systems (Springer, New York, 1993), p. 201; Nusse, H.E., Yorke, J.A., (1994) Dynamics. Numerical Explorations, , Springer, New York
  • Grebogi, C., Kostelich, E., Ott, E., Yorke, J.A., (1987) Physica D, 25, p. 347
  • Romeiras, R., Grebogi, C., Ott, E., Dayawansa, W.P., (1992) Physica D, 58, p. 165
  • Romero, N., (1995) Ergod. Theor. Dynam. Sys., 15, p. 735
  • Mora, L., Viana, M., (1993) Acta Mathematica, 171, p. 1
  • Nusse, H.E., Yorke, J.A., (1989) Physica D, 36, p. 137
  • Nusse, H.E., Yorke, J.A., (1991) Ergod. Theor. Dynam. Sys., 11, p. 189
  • Nusse, H.E., Yorke, J.A., (1991) Nonlinearity, 4, p. 1183
  • Nicolis, G., Balakrishnan, V., (1992) Phys. Rev. A, 46, p. 3569
  • Peters, P., Nicolis, G., (1992) Physica (Amsterdam), 188, p. 426
  • Wu, X., Kapral, R., (1993) Phys. Rev. Lett., 70, p. 1940
  • Actually, the mathematical model is an idealization of the real system and usually not all points in the phase space correspond to states that can be physically achieved; Mañé, R., (1987) Ergodic Theory of Differentiable Dynamics, , Springer, Berlin
  • Oseledec, V.I., (1968) Trans. Moscow Math. Soc., 19, p. 197
  • Grebogi, C., Ott, E., (1986) Phys. Rev. Lett., 56, p. 1011. , Physica D 24, 243 (1987). Although we cannot guarantee what happens with the whole basin between (Formula presented) and (Formula presented), we can say that at least a neighborhood of (Formula presented) which lies inside (Formula presented) is a smooth deformation of a neighborhood of (Formula presented) in (Formula presented). In many cases this is not just a small neighborhood, but the bulk of the basins
  • Szabóand T. Tél, K.G., (1994) Phys. Lett. A, 196, p. 173
  • Hunt, B.R., Ott, E., Yorke, J.A., (1996) Phys. Rev. E, 54, p. 4819

Citas:

---------- APA ----------
Moresco, P. & Dawson, S.P. (1997) . Chaos and crises in more than two dimensions. Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 55(5), 5350-5360.
http://dx.doi.org/10.1103/PhysRevE.55.5350
---------- CHICAGO ----------
Moresco, P., Dawson, S.P. "Chaos and crises in more than two dimensions" . Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics 55, no. 5 (1997) : 5350-5360.
http://dx.doi.org/10.1103/PhysRevE.55.5350
---------- MLA ----------
Moresco, P., Dawson, S.P. "Chaos and crises in more than two dimensions" . Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, vol. 55, no. 5, 1997, pp. 5350-5360.
http://dx.doi.org/10.1103/PhysRevE.55.5350
---------- VANCOUVER ----------
Moresco, P., Dawson, S.P. Chaos and crises in more than two dimensions. Phys Rev E. 1997;55(5):5350-5360.
http://dx.doi.org/10.1103/PhysRevE.55.5350